国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁(yè) > 編程 > C++ > 正文

C++實(shí)現(xiàn)分水嶺算法(Watershed Algorithm)

2020-01-26 13:47:18
字體:
來(lái)源:轉(zhuǎn)載
供稿:網(wǎng)友

分水嶺分割方法(Watershed Segmentation),是一種基于拓?fù)淅碚摰臄?shù)學(xué)形態(tài)學(xué)的分割方法,其基本思想是把圖像看作是測(cè)地學(xué)上的拓?fù)涞孛玻瑘D像中每一點(diǎn)像素的灰度值表示該點(diǎn)的海拔高度,每一個(gè)局部極小值及其影響區(qū)域稱(chēng)為集水盆,而集水盆的邊界則形成分水嶺。分水嶺的概念和形成可以通過(guò)模擬浸入過(guò)程來(lái)說(shuō)明。在每一個(gè)局部極小值表面,刺穿一個(gè)小孔,然后把整個(gè)模型慢慢浸入水中,隨著浸入的加深,每一個(gè)局部極小值的影響域慢慢向外擴(kuò)展,在兩個(gè)集水盆匯合處構(gòu)筑大壩,即形成分水嶺。
  分水嶺的計(jì)算過(guò)程是一個(gè)迭代標(biāo)注過(guò)程。分水嶺比較經(jīng)典的計(jì)算方法是L. Vincent提出的。在該算法中,分水嶺計(jì)算分兩個(gè)步驟,一個(gè)是排序過(guò)程,一個(gè)是淹沒(méi)過(guò)程。首先對(duì)每個(gè)像素的灰度級(jí)進(jìn)行從低到高排序,然后在從低到高實(shí)現(xiàn)淹沒(méi)過(guò)程中,對(duì)每一個(gè)局部極小值在h階高度的影響域采用先進(jìn)先出(FIFO)結(jié)構(gòu)進(jìn)行判斷及標(biāo)注。
  分水嶺變換得到的是輸入圖像的集水盆圖像,集水盆之間的邊界點(diǎn),即為分水嶺。顯然,分水嶺表示的是輸入圖像極大值點(diǎn)。因此,為得到圖像的邊緣信息,通常把梯度圖像作為輸入圖像,即:
  grad(f(x,y))=((f(x-1,y)-f(x+1,y))^2 + (f(x,y-1)-f(x,y+1))^2)^0.5
  式中,f(x,y)表示原始圖像,grad(.)表示梯度運(yùn)算。
  分水嶺算法對(duì)微弱邊緣具有良好的響應(yīng),圖像中的噪聲、物體表面細(xì)微的灰度變化,都會(huì)產(chǎn)生過(guò)度分割的現(xiàn)象。但同時(shí)應(yīng)當(dāng)看出,分水嶺算法對(duì)微弱邊緣具有良好的響應(yīng),是得到封閉連續(xù)邊緣的保證的。另外,分水嶺算法所得到的封閉的集水盆,為分析圖像的區(qū)域特征提供了可能。
  為消除分水嶺算法產(chǎn)生的過(guò)度分割,通??梢圆捎脙煞N處理方法,一是利用先驗(yàn)知識(shí)去除無(wú)關(guān)邊緣信息。二是修改梯度函數(shù)使得集水盆只響應(yīng)想要探測(cè)的目標(biāo)。
  為降低分水嶺算法產(chǎn)生的過(guò)度分割,通常要對(duì)梯度函數(shù)進(jìn)行修改,一個(gè)簡(jiǎn)單的方法是對(duì)梯度圖像進(jìn)行閾值處理,以消除灰度的微小變化產(chǎn)生的過(guò)度分割。即:
  g(x,y)=max(grad(f(x,y)),gθ)
  式中,gθ表示閾值。
  程序可采用方法:用閾值限制梯度圖像以達(dá)到消除灰度值的微小變化產(chǎn)生的過(guò)度分割,獲得適量的區(qū)域,再對(duì)這些區(qū)域的邊緣點(diǎn)的灰度級(jí)進(jìn)行從低到高排序,然后在從低到高實(shí)現(xiàn)淹沒(méi)的過(guò)程,梯度圖像用Sobel算子計(jì)算獲得。對(duì)梯度圖像進(jìn)行閾值處理時(shí),選取合適的閾值對(duì)最終分割的圖像有很大影響,因此閾值的選取是圖像分割效果好壞的一個(gè)關(guān)鍵。缺點(diǎn):實(shí)際圖像中可能含有微弱的邊緣,灰度變化的數(shù)值差別不是特別明顯,選取閾值過(guò)大可能會(huì)消去這些微弱邊緣。

  下面用C++實(shí)現(xiàn)分水嶺算法:

#define _USE_MATH_DEFINES  #include <cstddef> #include <cstdlib> #include <cstring> #include <climits> #include <cfloat> #include <ctime> #include <cmath> #include <cassert> #include <vector> #include <stack> #include <queue>  using namespace std;    typedef void              GVVoid; typedef bool              GVBoolean; typedef char              GVChar; typedef unsigned char          GVByte; typedef short              GVInt16; typedef unsigned short         GVUInt16; typedef int               GVInt32; typedef unsigned int          GVUInt32; typedef long long            GVInt64; typedef unsigned long long       GVUInt64; typedef float              GVFloat32; typedef double             GVFloat64;  const GVBoolean GV_TRUE         = true; const GVBoolean GV_FALSE        = false; const GVByte              GV_BYTE_MAX = UCHAR_MAX; const GVInt32              GV_INT32_MAX = INT_MAX; const GVInt32              GV_INT32_MIX = INT_MIN; const GVInt64              GV_INT64_MAX = LLONG_MAX; const GVInt64              GV_INT64_MIN = LLONG_MIN; const GVFloat32 GV_FLOAT32_MAX     = FLT_MAX; const GVFloat32 GV_FLOAT32_MIN     = FLT_MIN; const GVFloat64 GV_FLOAT64_MAX     = DBL_MAX; const GVFloat64 GV_FLOAT64_MIN     = DBL_MIN;  class                  GVPoint;    class GVPoint {  public:   GVInt32       x;   GVInt32       y;  public:   GVPoint() : x(0), y(0) { }   GVPoint(const GVPoint &obj) : x(obj.x), y(obj.y) { }   GVPoint(GVInt32 x, GVInt32 y) : x(x), y(y) { }  public:   GVBoolean operator ==(const GVPoint &right) const {     return ((x == right.x) && (y == right.y));   }   GVBoolean operator !=(const GVPoint &right) const {     return (!(x == right.x) || !(y == right.y));   } };    /*  * <Parameter>  *   <image> image data;  *   <width> image width;  *   <height> image height;  *   <label out> image of labeled watersheds.  */ GVVoid gvWatershed(     const GVByte *image,     GVInt32 width,     GVInt32 height,     GVInt32 *label) {    // Local constants   const GVInt32 WSHD = 0;   const GVInt32 INIT = -1;   const GVInt32 MASK = -2;   const GVPoint FICT_PIXEL = GVPoint(~0, ~0);    // Image statistics and sorting   GVInt32 size = width * height;   GVInt32 *image_stat = new GVInt32[GV_BYTE_MAX + 1];   GVInt32 *image_space = new GVInt32[GV_BYTE_MAX + 1];   GVPoint *image_sort = new GVPoint[size];   ::memset(image_stat, 0, sizeof (GVInt32) * (GV_BYTE_MAX + 1));   ::memset(image_space, 0, sizeof (GVInt32) * (GV_BYTE_MAX + 1));   ::memset(image_sort, 0, sizeof (GVPoint) * size);   for (GVInt32 i = 0; !(i == size); ++i) {     image_stat[image[i]]++;   }   for (GVInt32 i = 0; !(i == GV_BYTE_MAX); ++i) {     image_stat[i + 1] += image_stat[i];   }   for (GVInt32 i = 0; !(i == height); ++i) {     for (GVInt32 j = 0; !(j == width); ++j) {       GVByte space = image[i * width + j];       GVInt32 index = image_stat[space] - (++image_space[space]);       image_sort[index].x = j;       image_sort[index].y = i;     }   }   for (GVInt32 i = GV_BYTE_MAX; !(i == 0); --i) {     image_stat[i] -= image_stat[i - 1];   }    // Watershed algorithm   GVPoint *head = image_sort;   GVInt32 space = 0;   GVInt32 *dist = new GVInt32[size];   GVInt32 dist_cnt = 0;   GVInt32 label_cnt = 0;   std::queue<GVPoint> queue;   ::memset(dist, 0, sizeof (GVInt32) * size);   ::memset(label, ~0, sizeof (GVInt32) * size);   for (GVInt32 h = 0; !(h == (GV_BYTE_MAX + 1)); ++h) {     head += space;     space = image_stat[h];     for (GVInt32 i = 0; !(i == space); ++i) {       GVInt32 index = head[i].y * width + head[i].x;       GVInt32 index_l = ((head[i].x - 1) < 0) ? -1 : ((head[i].x - 1) + head[i].y * width);       GVInt32 index_r = !((head[i].x + 1) > width) ? -1 : ((head[i].x + 1) + head[i].y * width);       GVInt32 index_t = ((head[i].y - 1) < 0) ? -1 : (head[i].x + (head[i].y - 1) * width);       GVInt32 index_b = !((head[i].y + 1) > height) ? -1 : (head[i].x + (head[i].y + 1) * width);       label[index] = MASK;       if (    (!(index_l < 0) && !(label[index_l] < WSHD))           || (!(index_r < 0) && !(label[index_r] < WSHD))           || (!(index_t < 0) && !(label[index_t] < WSHD))           || (!(index_b < 0) && !(label[index_b] < WSHD))) {         dist[index] = 1;         queue.push(head[i]);       }     }     dist_cnt = 1;     queue.push(FICT_PIXEL);     while (GV_TRUE) {       GVPoint top = queue.front();       GVInt32 index = top.y * width + top.x;       GVInt32 index_l = ((top.x - 1) < 0) ? -1 : ((top.x - 1) + top.y * width);       GVInt32 index_r = !((top.x + 1) > width) ? -1 : ((top.x + 1) + top.y * width);       GVInt32 index_t = ((top.y - 1) < 0) ? -1 : (top.x + (top.y - 1) * width);       GVInt32 index_b = !((top.y + 1) > height) ? -1 : (top.x + (top.y + 1) * width);       queue.pop();       if (top == FICT_PIXEL) {         if (queue.empty()) break;         else {           ++dist_cnt;           queue.push(FICT_PIXEL);           top = queue.front();           queue.pop();         }       }       if (!(index_l < 0)) {         if ((dist[index_l] < dist_cnt) && !(label[index_l] < WSHD)) {           if (label[index_l] > WSHD) {             if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_l];             else if (!(label[index] == label[index_l])) label[index] = WSHD;           } else if (label[index] == MASK) {             label[index] = WSHD;           }         } else if ((label[index_l] == MASK) && (dist[index_l] == 0)) {           dist[index_l] = dist_cnt + 1;           queue.push(GVPoint(top.x - 1, top.y));         }       }       if (!(index_r < 0)) {         if ((dist[index_r] < dist_cnt) && !(label[index_r] < WSHD)) {           if (label[index_r] > WSHD) {             if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_r];             else if (!(label[index] == label[index_r])) label[index] = WSHD;           } else if (label[index] == MASK) {             label[index] = WSHD;           }         } else if ((label[index_r] == MASK) && (dist[index_r] == 0)) {           dist[index_r] = dist_cnt + 1;           queue.push(GVPoint(top.x + 1, top.y));         }       }       if (!(index_t < 0)) {         if ((dist[index_t] < dist_cnt) && !(label[index_t] < WSHD)) {           if (label[index_t] > WSHD) {             if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_t];             else if (!(label[index] == label[index_t])) label[index] = WSHD;           } else if (label[index] == MASK) {             label[index] = WSHD;           }         } else if ((label[index_t] == MASK) && (dist[index_t] == 0)) {           dist[index_t] = dist_cnt + 1;           queue.push(GVPoint(top.x, top.y - 1));         }       }       if (!(index_b < 0)) {         if ((dist[index_b] < dist_cnt) && !(label[index_b] < WSHD)) {           if (label[index_b] > WSHD) {             if ((label[index] == MASK) || (label[index] = WSHD)) label[index] = label[index_b];             else if (!(label[index] == label[index_b])) label[index] = WSHD;           } else if (label[index] == MASK) {             label[index] = WSHD;           }         } else if ((label[index_b] == MASK) && (dist[index_b] == 0)) {           dist[index_b] = dist_cnt + 1;           queue.push(GVPoint(top.x, top.y + 1));         }       }     }     for (GVInt32 i = 0; !(i == space); ++i) {       GVInt32 index = head[i].y * width + head[i].x;       dist[index] = 0;       if (label[index] == MASK) {         label_cnt++;         label[index] = label_cnt;         queue.push(head[i]);         while (!queue.empty()) {           GVPoint top = queue.front();           GVInt32 index_l = ((top.x - 1) < 0) ? -1 : ((top.x - 1) + top.y * width);           GVInt32 index_r = !((top.x + 1) > width) ? -1 : ((top.x + 1) + top.y * width);           GVInt32 index_t = ((top.y - 1) < 0) ? -1 : (top.x + (top.y - 1) * width);           GVInt32 index_b = !((top.y + 1) > height) ? -1 : (top.x + (top.y + 1) * width);           queue.pop();           if (!(index_l < 0) && (label[index_l] == MASK)) {             queue.push(GVPoint(top.x - 1, top.y));             label[index_l] = label_cnt;           }           if (!(index_r < 0) && (label[index_r] == MASK)) {             queue.push(GVPoint(top.x + 1, top.y));             label[index_r] = label_cnt;           }           if (!(index_t < 0) && (label[index_t] == MASK)) {             queue.push(GVPoint(top.x, top.y - 1));             label[index_t] = label_cnt;           }           if (!(index_b < 0) && (label[index_b] == MASK)) {             queue.push(GVPoint(top.x, top.y + 1));             label[index_b] = label_cnt;           }         }       }     }   }    // Release resources   delete[] image_stat;   delete[] image_space;   delete[] image_sort;   delete[] dist; } 

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持武林網(wǎng)。

發(fā)表評(píng)論 共有條評(píng)論
用戶名: 密碼:
驗(yàn)證碼: 匿名發(fā)表
主站蜘蛛池模板: 桃江县| 东宁县| 恩平市| 安仁县| 家居| 民权县| 金昌市| 化州市| 贵阳市| 苍山县| 平远县| 钦州市| 浦北县| 孙吴县| 特克斯县| 南投市| 丹江口市| 双辽市| 麦盖提县| 南漳县| 玉田县| 高青县| 元氏县| 武夷山市| 浪卡子县| 化德县| 赞皇县| 铜川市| 临高县| 东台市| 前郭尔| 浑源县| 大厂| 台前县| 吉木乃县| 仙居县| 张家港市| 红原县| 广州市| 望城县| 大余县|