国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 系統 > Android > 正文

Android系統進程間通信(IPC)機制Binder中的Client獲得Server遠程接口過程源代碼分析

2019-12-12 05:30:24
字體:
來源:轉載
供稿:網友

     在上一篇文章中,我們分析了Android系統進程間通信機制Binder中的Server在啟動過程使用Service Manager的addService接口把自己添加到Service Manager守護過程中接受管理。在這一篇文章中,我們將深入到Binder驅動程序源代碼去分析Client是如何通過Service Manager的getService接口中來獲得Server遠程接口的。Client只有獲得了Server的遠程接口之后,才能進一步調用Server提供的服務。

        這里,我們仍然是通過Android系統中自帶的多媒體播放器為例子來說明Client是如何通過IServiceManager::getService接口來獲得MediaPlayerService這個Server的遠程接口的。假設計讀者已經閱讀過前面三篇文章淺談Service Manager成為Android進程間通信(IPC)機制Binder守護進程之路淺談Android系統進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager接口之路Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析,即假設Service Manager和MediaPlayerService已經啟動完畢,Service Manager現在等待Client的請求。

        這里,我們要舉例子說明的Client便是MediaPlayer了,它聲明和實現在frameworks/base/include/media/mediaplayer.h和frameworks/base/media/libmedia/mediaplayer.cpp文件中。MediaPlayer繼承于IMediaDeathNotifier類,這個類聲明和實現在frameworks/base/include/media/IMediaDeathNotifier.h和frameworks/base/media/libmedia//IMediaDeathNotifier.cpp文件中,里面有一個靜態成員函數getMeidaPlayerService,它通過IServiceManager::getService接口來獲得MediaPlayerService的遠程接口。

        在介紹IMediaDeathNotifier::getMeidaPlayerService函數之前,我們先了解一下這個函數的目標。看來前面淺談Android系統進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager接口之路這篇文章的讀者知道,我們在獲取Service Manager遠程接口時,最終是獲得了一個BpServiceManager對象的IServiceManager接口。類似地,我們要獲得MediaPlayerService的遠程接口,實際上就是要獲得一個稱為BpMediaPlayerService對象的IMediaPlayerService接口。現在,我們就先來看一下BpMediaPlayerService的類圖:

        從這個類圖可以看到,BpMediaPlayerService繼承于BpInterface<IMediaPlayerService>類,即BpMediaPlayerService繼承了IMediaPlayerService類和BpRefBase類,這兩個類又分別繼續了RefBase類。BpRefBase類有一個成員變量mRemote,它的類型為IBinder,實際是一個BpBinder對象。BpBinder類使用了IPCThreadState類來與Binder驅動程序進行交互,而IPCThreadState類有一個成員變量mProcess,它的類型為ProcessState,IPCThreadState類借助ProcessState類來打開Binder設備文件/dev/binder,因此,它可以和Binder驅動程序進行交互。

       BpMediaPlayerService的構造函數有一個參數impl,它的類型為const sp<IBinder>&,從上面的描述中,這個實際上就是一個BpBinder對象。這樣,要創建一個BpMediaPlayerService對象,首先就要有一個BpBinder對象。再來看BpBinder類的構造函數,它有一個參數handle,類型為int32_t,這個參數的意義就是請求MediaPlayerService這個遠程接口的進程對MediaPlayerService這個Binder實體的引用了。因此,獲取MediaPlayerService這個遠程接口的本質問題就變為從Service Manager中獲得MediaPlayerService的一個句柄了。

       現在,我們就來看一下IMediaDeathNotifier::getMeidaPlayerService的實現:

// establish binder interface to MediaPlayerService /*static*/const sp<IMediaPlayerService>& IMediaDeathNotifier::getMediaPlayerService() {  LOGV("getMediaPlayerService");  Mutex::Autolock _l(sServiceLock);  if (sMediaPlayerService.get() == 0) {   sp<IServiceManager> sm = defaultServiceManager();   sp<IBinder> binder;   do {    binder = sm->getService(String16("media.player"));    if (binder != 0) {     break;     }     LOGW("Media player service not published, waiting...");     usleep(500000); // 0.5 s   } while(true);    if (sDeathNotifier == NULL) {   sDeathNotifier = new DeathNotifier();  }  binder->linkToDeath(sDeathNotifier);  sMediaPlayerService = interface_cast<IMediaPlayerService>(binder);  }  LOGE_IF(sMediaPlayerService == 0, "no media player service!?");  return sMediaPlayerService; } 

        函數首先通過defaultServiceManager函數來獲得Service Manager的遠程接口,實際上就是獲得BpServiceManager的IServiceManager接口,具體可以參考淺談Android系統進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager接口之路一文。總的來說,這里的語句:

                     sp<IServiceManager> sm = defaultServiceManager();  

        相當于是:

                     sp<IServiceManager> sm = new BpServiceManager(new BpBinder(0));   

        這里的0表示Service Manager的遠程接口的句柄值是0。

        接下去的while循環是通過sm->getService接口來不斷嘗試獲得名稱為“media.player”的Service,即MediaPlayerService。為什么要通過這無窮循環來得MediaPlayerService呢?因為這時候MediaPlayerService可能還沒有啟動起來,所以這里如果發現取回來的binder接口為NULL,就睡眠0.5秒,然后再嘗試獲取,這是獲取Service接口的標準做法。

        我們來看一下BpServiceManager::getService的實現:

class BpServiceManager : public BpInterface<IServiceManager> {  ......   virtual sp<IBinder> getService(const String16& name) const  {   unsigned n;   for (n = 0; n < 5; n++){    sp<IBinder> svc = checkService(name);    if (svc != NULL) return svc;    LOGI("Waiting for service %s.../n", String8(name).string());    sleep(1);   }   return NULL;  }   virtual sp<IBinder> checkService( const String16& name) const  {   Parcel data, reply;   data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());   data.writeString16(name);   remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);   return reply.readStrongBinder();  }   ...... }; 

         BpServiceManager::getService通過BpServiceManager::checkService執行操作。

         在BpServiceManager::checkService中,首先是通過Parcel::writeInterfaceToken往data寫入一個RPC頭,這個我們在Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析一文已經介紹過了,就是寫往data里面寫入了一個整數和一個字符串“android.os.IServiceManager”, Service Manager來處理CHECK_SERVICE_TRANSACTION請求之前,會先驗證一下這個RPC頭,看看是否正確。接著再往data寫入一個字符串name,這里就是“media.player”了。回憶一下Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析這篇文章,那里已經往Service Manager中注冊了一個名字為“media.player”的MediaPlayerService。

        這里的remote()返回的是一個BpBinder,具體可以參考淺談Android系統進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager接口之路一文,于是,就進行到BpBinder::transact函數了:

status_t BpBinder::transact(  uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) {  // Once a binder has died, it will never come back to life.  if (mAlive) {   status_t status = IPCThreadState::self()->transact(    mHandle, code, data, reply, flags);   if (status == DEAD_OBJECT) mAlive = 0;   return status;  }   return DEAD_OBJECT; } 

        這里的mHandle = 0,code = CHECK_SERVICE_TRANSACTION,flags = 0。

        這里再進入到IPCThread::transact函數中:

status_t IPCThreadState::transact(int32_t handle,          uint32_t code, const Parcel& data,          Parcel* reply, uint32_t flags) {  status_t err = data.errorCheck();   flags |= TF_ACCEPT_FDS;   IF_LOG_TRANSACTIONS() {   TextOutput::Bundle _b(alog);   alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand "    << handle << " / code " << TypeCode(code) << ": "    << indent << data << dedent << endl;  }    if (err == NO_ERROR) {   LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),    (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");   err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);  }    if (err != NO_ERROR) {   if (reply) reply->setError(err);   return (mLastError = err);  }    if ((flags & TF_ONE_WAY) == 0) {   #if 0   if (code == 4) { // relayout    LOGI(">>>>>> CALLING transaction 4");   } else {    LOGI(">>>>>> CALLING transaction %d", code);   }   #endif   if (reply) {    err = waitForResponse(reply);   } else {    Parcel fakeReply;    err = waitForResponse(&fakeReply);   }   #if 0   if (code == 4) { // relayout    LOGI("<<<<<< RETURNING transaction 4");   } else {    LOGI("<<<<<< RETURNING transaction %d", code);   }   #endif      IF_LOG_TRANSACTIONS() {    TextOutput::Bundle _b(alog);    alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand "     << handle << ": ";    if (reply) alog << indent << *reply << dedent << endl;    else alog << "(none requested)" << endl;   }  } else {   err = waitForResponse(NULL, NULL);  }    return err; } 

         首先是調用函數writeTransactionData寫入將要傳輸的數據到IPCThreadState的成員變量mOut中去:

status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,  int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer) {  binder_transaction_data tr;   tr.target.handle = handle;  tr.code = code;  tr.flags = binderFlags;    const status_t err = data.errorCheck();  if (err == NO_ERROR) {   tr.data_size = data.ipcDataSize();   tr.data.ptr.buffer = data.ipcData();   tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t);   tr.data.ptr.offsets = data.ipcObjects();  } else if (statusBuffer) {   tr.flags |= TF_STATUS_CODE;   *statusBuffer = err;   tr.data_size = sizeof(status_t);   tr.data.ptr.buffer = statusBuffer;   tr.offsets_size = 0;   tr.data.ptr.offsets = NULL;  } else {   return (mLastError = err);  }    mOut.writeInt32(cmd);  mOut.write(&tr, sizeof(tr));    return NO_ERROR; } 

        結構體binder_transaction_data在上一篇文章Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析已經介紹過,這里不再累述,這個結構體是用來描述要傳輸的參數的內容的。這里著重描述一下將要傳輸的參數tr里面的內容,handle = 0,code =  CHECK_SERVICE_TRANSACTION,cmd = BC_TRANSACTION,data里面的數據分別為:

writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER); writeString16("android.os.IServiceManager"); writeString16("media.player"); 

       這是在BpServiceManager::checkService函數里面寫進去的,其中前兩個是RPC頭,Service Manager在收到這個請求時會驗證這兩個參數是否正確,這點前面也提到了。IPCThread->getStrictModePolicy默認返回0,STRICT_MODE_PENALTY_GATHER定義為:

// Note: must be kept in sync with android/os/StrictMode.java's PENALTY_GATHER 
#define STRICT_MODE_PENALTY_GATHER 0x100  

       我們不關心這個參數的含義,這不會影響我們分析下面的源代碼,有興趣的讀者可以研究一下。這里要注意的是,要傳輸的參數不包含有Binder對象,因此tr.offsets_size = 0。要傳輸的參數最后寫入到IPCThreadState的成員變量mOut中,包括cmd和tr兩個數據。

       回到IPCThread::transact函數中,由于(flags & TF_ONE_WAY) == 0為true,即這是一個同步請求,并且reply  != NULL,

最終調用:

                       err = waitForResponse(reply);  

       進入到waitForResponse函數中:

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) {  int32_t cmd;  int32_t err;   while (1) {   if ((err=talkWithDriver()) < NO_ERROR) break;   err = mIn.errorCheck();   if (err < NO_ERROR) break;   if (mIn.dataAvail() == 0) continue;      cmd = mIn.readInt32();      IF_LOG_COMMANDS() {    alog << "Processing waitForResponse Command: "     << getReturnString(cmd) << endl;   }    switch (cmd) {   case BR_TRANSACTION_COMPLETE:    if (!reply && !acquireResult) goto finish;    break;      case BR_DEAD_REPLY:    err = DEAD_OBJECT;    goto finish;    case BR_FAILED_REPLY:    err = FAILED_TRANSACTION;    goto finish;      case BR_ACQUIRE_RESULT:    {     LOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");     const int32_t result = mIn.readInt32();     if (!acquireResult) continue;     *acquireResult = result ? NO_ERROR : INVALID_OPERATION;    }    goto finish;      case BR_REPLY:    {     binder_transaction_data tr;     err = mIn.read(&tr, sizeof(tr));     LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");     if (err != NO_ERROR) goto finish;      if (reply) {      if ((tr.flags & TF_STATUS_CODE) == 0) {       reply->ipcSetDataReference(        reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),        tr.data_size,        reinterpret_cast<const size_t*>(tr.data.ptr.offsets),        tr.offsets_size/sizeof(size_t),        freeBuffer, this);      } else {       err = *static_cast<const status_t*>(tr.data.ptr.buffer);       freeBuffer(NULL,        reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),        tr.data_size,        reinterpret_cast<const size_t*>(tr.data.ptr.offsets),        tr.offsets_size/sizeof(size_t), this);      }     } else {      freeBuffer(NULL,       reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),       tr.data_size,       reinterpret_cast<const size_t*>(tr.data.ptr.offsets),       tr.offsets_size/sizeof(size_t), this);      continue;     }    }    goto finish;    default:    err = executeCommand(cmd);    if (err != NO_ERROR) goto finish;    break;   }  }  finish:  if (err != NO_ERROR) {   if (acquireResult) *acquireResult = err;   if (reply) reply->setError(err);   mLastError = err;  }    return err; } 

        這個函數通過IPCThreadState::talkWithDriver與驅動程序進行交互:

status_t IPCThreadState::talkWithDriver(bool doReceive) {  LOG_ASSERT(mProcess->mDriverFD >= 0, "Binder driver is not opened");   binder_write_read bwr;   // Is the read buffer empty?  const bool needRead = mIn.dataPosition() >= mIn.dataSize();   // We don't want to write anything if we are still reading  // from data left in the input buffer and the caller  // has requested to read the next data.  const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;   bwr.write_size = outAvail;  bwr.write_buffer = (long unsigned int)mOut.data();   // This is what we'll read.  if (doReceive && needRead) {   bwr.read_size = mIn.dataCapacity();   bwr.read_buffer = (long unsigned int)mIn.data();  } else {   bwr.read_size = 0;  }   ......   // Return immediately if there is nothing to do.  if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;   bwr.write_consumed = 0;  bwr.read_consumed = 0;  status_t err;  do {   ...... #if defined(HAVE_ANDROID_OS)   if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0)    err = NO_ERROR;   else    err = -errno; #else   err = INVALID_OPERATION; #endif   ......  } while (err == -EINTR);   ......   if (err >= NO_ERROR) {   if (bwr.write_consumed > 0) {    if (bwr.write_consumed < (ssize_t)mOut.dataSize())     mOut.remove(0, bwr.write_consumed);    else     mOut.setDataSize(0);   }   if (bwr.read_consumed > 0) {    mIn.setDataSize(bwr.read_consumed);    mIn.setDataPosition(0);   }    ......    return NO_ERROR;  }   return err; } 

        這里的needRead為true,因此,bwr.read_size大于0;outAvail也大于0,因此,bwr.write_size也大于0。函數最后通過:

            ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)  

        進入到Binder驅動程序的binder_ioctl函數中。注意,這里的mProcess->mDriverFD是在我們前面調用defaultServiceManager函數獲得Service Manager遠程接口時,打開的設備文件/dev/binder的文件描述符,mProcess是IPCSThreadState的成員變量。

        Binder驅動程序的binder_ioctl函數中,我們只關注BINDER_WRITE_READ命令相關的邏輯:

static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) {  int ret;  struct binder_proc *proc = filp->private_data;  struct binder_thread *thread;  unsigned int size = _IOC_SIZE(cmd);  void __user *ubuf = (void __user *)arg;   /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx/n", proc->pid, current->pid, cmd, arg);*/   ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2);  if (ret)   return ret;   mutex_lock(&binder_lock);  thread = binder_get_thread(proc);  if (thread == NULL) {   ret = -ENOMEM;   goto err;  }   switch (cmd) {  case BINDER_WRITE_READ: {   struct binder_write_read bwr;   if (size != sizeof(struct binder_write_read)) {    ret = -EINVAL;    goto err;   }   if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {    ret = -EFAULT;    goto err;   }   if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)    printk(KERN_INFO "binder: %d:%d write %ld at %08lx, read %ld at %08lx/n",    proc->pid, thread->pid, bwr.write_size, bwr.write_buffer, bwr.read_size, bwr.read_buffer);   if (bwr.write_size > 0) {    ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed);    if (ret < 0) {     bwr.read_consumed = 0;     if (copy_to_user(ubuf, &bwr, sizeof(bwr)))      ret = -EFAULT;     goto err;    }   }   if (bwr.read_size > 0) {    ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK);    if (!list_empty(&proc->todo))     wake_up_interruptible(&proc->wait);    if (ret < 0) {     if (copy_to_user(ubuf, &bwr, sizeof(bwr)))      ret = -EFAULT;     goto err;    }   }   if (binder_debug_mask & BINDER_DEBUG_READ_WRITE)    printk(KERN_INFO "binder: %d:%d wrote %ld of %ld, read return %ld of %ld/n",    proc->pid, thread->pid, bwr.write_consumed, bwr.write_size, bwr.read_consumed, bwr.read_size);   if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {    ret = -EFAULT;    goto err;   }   break;        }  ......  default:   ret = -EINVAL;   goto err;  }  ret = 0; err:  ......  return ret; } 

        這里的filp->private_data的值是在defaultServiceManager函數創建ProcessState對象時,在ProcessState構造函數通過open文件操作函數打開設備文件/dev/binder時設置好的,它表示的是調用open函數打開設備文件/dev/binder的進程上下文信息,這里將它取出來保存在proc本地變量中。

        這里的thread本地變量表示當前線程上下文信息,通過binder_get_thread函數獲得。在前面執行ProcessState構造函數時,也會通過ioctl文件操作函數進入到這個函數,那是第一次進入到binder_ioctl這里,因此,調用binder_get_thread時,表示當前進程上下文信息的proc變量還沒有關于當前線程的上下文信息,因此,會為proc創建一個表示當前線程上下文信息的thread,會保存在proc->threads表示的紅黑樹結構中。這里調用binder_get_thread就可以直接從proc找到并返回了。

        進入到BINDER_WRITE_READ相關的邏輯。先看看BINDER_WRITE_READ的定義:

                  #define BINDER_WRITE_READ           _IOWR('b', 1, struct binder_write_read)  

        這里可以看出,BINDER_WRITE_READ命令的參數類型為struct binder_write_read:

struct binder_write_read {  signed long write_size; /* bytes to write */  signed long write_consumed; /* bytes consumed by driver */  unsigned long write_buffer;  signed long read_size; /* bytes to read */  signed long read_consumed; /* bytes consumed by driver */  unsigned long read_buffer; }; 

        這個結構體的含義可以參考淺談Service Manager成為Android進程間通信(IPC)機制Binder守護進程之路一文。這里首先是通過copy_from_user函數把用戶傳進來的參數的內容拷貝到本地變量bwr中。

        從上面的調用過程,我們知道,這里bwr.write_size是大于0的,因此進入到binder_thread_write函數中,我們只關注BC_TRANSACTION相關的邏輯:

int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,      void __user *buffer, int size, signed long *consumed) {  uint32_t cmd;  void __user *ptr = buffer + *consumed;  void __user *end = buffer + size;   while (ptr < end && thread->return_error == BR_OK) {   if (get_user(cmd, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);   if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {    binder_stats.bc[_IOC_NR(cmd)]++;    proc->stats.bc[_IOC_NR(cmd)]++;    thread->stats.bc[_IOC_NR(cmd)]++;   }   switch (cmd) {   ......   case BC_TRANSACTION:   case BC_REPLY: {    struct binder_transaction_data tr;     if (copy_from_user(&tr, ptr, sizeof(tr)))     return -EFAULT;    ptr += sizeof(tr);    binder_transaction(proc, thread, &tr, cmd == BC_REPLY);    break;       }   ......   default:    printk(KERN_ERR "binder: %d:%d unknown command %d/n", proc->pid, thread->pid, cmd);    return -EINVAL;   }   *consumed = ptr - buffer;  }  return 0; } 

        這里再次把用戶傳出來的參數拷貝到本地變量tr中,tr的類型為struct binder_transaction_data,這個就是前面我們在IPCThreadState::writeTransactionData寫入的內容了。

        接著進入到binder_transaction函數中,不相關的代碼我們忽略掉:

static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply) {  struct binder_transaction *t;  struct binder_work *tcomplete;  size_t *offp, *off_end;  struct binder_proc *target_proc;  struct binder_thread *target_thread = NULL;  struct binder_node *target_node = NULL;  struct list_head *target_list;  wait_queue_head_t *target_wait;  struct binder_transaction *in_reply_to = NULL;  struct binder_transaction_log_entry *e;  uint32_t return_error;   .......   if (reply) {   ......  } else {   if (tr->target.handle) {    ......   } else {    target_node = binder_context_mgr_node;    if (target_node == NULL) {     return_error = BR_DEAD_REPLY;     goto err_no_context_mgr_node;    }   }   ......   target_proc = target_node->proc;   if (target_proc == NULL) {    return_error = BR_DEAD_REPLY;    goto err_dead_binder;   }   if (!(tr->flags & TF_ONE_WAY) && thread->transaction_stack) {    ......   }  }  if (target_thread) {   ......  } else {   target_list = &target_proc->todo;   target_wait = &target_proc->wait;  }  ......   /* TODO: reuse incoming transaction for reply */  t = kzalloc(sizeof(*t), GFP_KERNEL);  if (t == NULL) {   return_error = BR_FAILED_REPLY;   goto err_alloc_t_failed;  }  binder_stats.obj_created[BINDER_STAT_TRANSACTION]++;   tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);  if (tcomplete == NULL) {   return_error = BR_FAILED_REPLY;   goto err_alloc_tcomplete_failed;  }  binder_stats.obj_created[BINDER_STAT_TRANSACTION_COMPLETE]++;   t->debug_id = ++binder_last_id;    ......    if (!reply && !(tr->flags & TF_ONE_WAY))   t->from = thread;  else   t->from = NULL;  t->sender_euid = proc->tsk->cred->euid;  t->to_proc = target_proc;  t->to_thread = target_thread;  t->code = tr->code;  t->flags = tr->flags;  t->priority = task_nice(current);  t->buffer = binder_alloc_buf(target_proc, tr->data_size,   tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));  if (t->buffer == NULL) {   return_error = BR_FAILED_REPLY;   goto err_binder_alloc_buf_failed;  }  t->buffer->allow_user_free = 0;  t->buffer->debug_id = t->debug_id;  t->buffer->transaction = t;  t->buffer->target_node = target_node;  if (target_node)   binder_inc_node(target_node, 1, 0, NULL);   offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *)));   if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {   ......   return_error = BR_FAILED_REPLY;   goto err_copy_data_failed;  }   ......   if (reply) {   ......  } else if (!(t->flags & TF_ONE_WAY)) {   BUG_ON(t->buffer->async_transaction != 0);   t->need_reply = 1;   t->from_parent = thread->transaction_stack;   thread->transaction_stack = t;  } else {   ......  }   t->work.type = BINDER_WORK_TRANSACTION;  list_add_tail(&t->work.entry, target_list);  tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;  list_add_tail(&tcomplete->entry, &thread->todo);  if (target_wait)   wake_up_interruptible(target_wait);  return;   ...... } 

        注意,這里的參數reply = 0,表示這是一個BC_TRANSACTION命令。

        前面我們提到,傳給驅動程序的handle值為0,即這里的tr->target.handle = 0,表示請求的目標Binder對象是Service Manager,因此有:

target_node = binder_context_mgr_node; target_proc = target_node->proc; target_list = &target_proc->todo; target_wait = &target_proc->wait; 

        其中binder_context_mgr_node是在Service Manager通知Binder驅動程序它是守護過程時創建的。

        接著創建一個待完成事項tcomplete,它的類型為struct binder_work,這是等一會要保存在當前線程的todo隊列去的,表示當前線程有一個待完成的事務。緊跟著創建一個待處理事務t,它的類型為struct binder_transaction,這是等一會要存在到Service Manager的todo隊列去的,表示Service Manager當前有一個事務需要處理。同時,這個待處理事務t也要存放在當前線程的待完成事務transaction_stack列表中去:

                       t->from_parent = thread->transaction_stack;  
                       thread->transaction_stack = t;  

        這樣表明當前線程還有事務要處理。

        繼續往下看,就是分別把tcomplete和t放在當前線程thread和Service Manager進程的todo隊列去了:

t->work.type = BINDER_WORK_TRANSACTION; list_add_tail(&t->work.entry, target_list); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; list_add_tail(&tcomplete->entry, &thread->todo); 

        最后,Service Manager有事情可做了,就要喚醒它了:

                     wake_up_interruptible(target_wait);  

        前面我們提到,此時Service Manager正在等待Client的請求,也就是Service Manager此時正在進入到Binder驅動程序的binder_thread_read函數中,并且休眠在target->wait上,具體參考淺談Service Manager成為Android進程間通信(IPC)機制Binder守護進程之路一文。

        這里,我們暫時忽略Service Manager被喚醒之后的情景,繼續看當前線程的執行。

        函數binder_transaction執行完成之后,就一路返回到binder_ioctl函數里去了。函數binder_ioctl從binder_thread_write函數調用處返回后,發現bwr.read_size大于0,于是就進入到binder_thread_read函數去了:

static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,      void __user *buffer, int size, signed long *consumed, int non_block) {  void __user *ptr = buffer + *consumed;  void __user *end = buffer + size;   int ret = 0;  int wait_for_proc_work;   if (*consumed == 0) {   if (put_user(BR_NOOP, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);  }  retry:  wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo);   ......    if (wait_for_proc_work) {   ......  } else {   if (non_block) {    if (!binder_has_thread_work(thread))     ret = -EAGAIN;   } else    ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));  }   ......   while (1) {   uint32_t cmd;   struct binder_transaction_data tr;   struct binder_work *w;   struct binder_transaction *t = NULL;    if (!list_empty(&thread->todo))    w = list_first_entry(&thread->todo, struct binder_work, entry);   else if (!list_empty(&proc->todo) && wait_for_proc_work)    w = list_first_entry(&proc->todo, struct binder_work, entry);   else {    if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */     goto retry;    break;   }    if (end - ptr < sizeof(tr) + 4)    break;    switch (w->type) {   ......   case BINDER_WORK_TRANSACTION_COMPLETE: {    cmd = BR_TRANSACTION_COMPLETE;    if (put_user(cmd, (uint32_t __user *)ptr))     return -EFAULT;    ptr += sizeof(uint32_t);     binder_stat_br(proc, thread, cmd);    if (binder_debug_mask & BINDER_DEBUG_TRANSACTION_COMPLETE)     printk(KERN_INFO "binder: %d:%d BR_TRANSACTION_COMPLETE/n",     proc->pid, thread->pid);     list_del(&w->entry);    kfree(w);    binder_stats.obj_deleted[BINDER_STAT_TRANSACTION_COMPLETE]++;             } break;   ......   }    if (!t)    continue;    ......  }  done:  ......  return 0; } 

       函數首先是寫入一個操作碼BR_NOOP到用戶傳進來的緩沖區中去。

      回憶一下上面的binder_transaction函數,這里的thread->transaction_stack != NULL,并且thread->todo也不為空,所以線程不會進入休眠狀態。

      進入while循環中,首先是從thread->todo隊列中取回待處理事項w,w的類型為BINDER_WORK_TRANSACTION_COMPLETE,這也是在binder_transaction函數里面設置的。對BINDER_WORK_TRANSACTION_COMPLETE的處理也很簡單,只是把一個操作碼BR_TRANSACTION_COMPLETE寫回到用戶傳進來的緩沖區中去。這時候,用戶傳進來的緩沖區就包含兩個操作碼了,分別是BR_NOOP和BINDER_WORK_TRANSACTION_COMPLETE。

      binder_thread_read執行完之后,返回到binder_ioctl函數中,將操作結果寫回到用戶空間中去:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {  ret = -EFAULT;  goto err; } 

       最后就返回到IPCThreadState::talkWithDriver函數中了。

       IPCThreadState::talkWithDriver函數從下面語句:

                  ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)  

       返回后,首先是清空之前寫入Binder驅動程序的內容:

if (bwr.write_consumed > 0) {   if (bwr.write_consumed < (ssize_t)mOut.dataSize())    mOut.remove(0, bwr.write_consumed);   else    mOut.setDataSize(0); } 

       接著是設置從Binder驅動程序讀取的內容:

if (bwr.read_consumed > 0) {   mIn.setDataSize(bwr.read_consumed);   mIn.setDataPosition(0); } 

       然后就返回到IPCThreadState::waitForResponse去了。IPCThreadState::waitForResponse函數的處理也很簡單,就是處理剛才從Binder驅動程序讀入內容了。從前面的分析中,我們知道,從Binder驅動程序讀入的內容就是兩個整數了,分別是BR_NOOP和BR_TRANSACTION_COMPLETE。對BR_NOOP的處理很簡單,正如它的名字所示,什么也不做;而對BR_TRANSACTION_COMPLETE的處理,就分情況了,如果這個請求是異步的,那個整個BC_TRANSACTION操作就完成了,如果這個請求是同步的,即要等待回復的,也就是reply不為空,那么還要繼續通過IPCThreadState::talkWithDriver進入到Binder驅動程序中去等待BC_TRANSACTION操作的處理結果。

      這里屬于后一種情況,于是再次通過IPCThreadState::talkWithDriver進入到Binder驅動程序的binder_ioctl函數中。不過這一次在binder_ioctl函數中,bwr.write_size等于0,而bwr.read_size大于0,于是再次進入到binder_thread_read函數中。這時候thread->transaction_stack仍然不為NULL,不過thread->todo隊列已經為空了,因為前面我們已經處理過thread->todo隊列的內容了,于是就通過下面語句:

                 ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));  

      進入休眠狀態了,等待Service Manager的喚醒。

      現在,我們終于可以回到Service Manager被喚醒之后的過程了。前面我們說過,Service Manager此時正在binder_thread_read函數中休眠中:

static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,      void __user *buffer, int size, signed long *consumed, int non_block) {  void __user *ptr = buffer + *consumed;  void __user *end = buffer + size;   int ret = 0;  int wait_for_proc_work;   if (*consumed == 0) {   if (put_user(BR_NOOP, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);  }  retry:  wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo);   ......   if (wait_for_proc_work) {   ......   if (non_block) {    if (!binder_has_proc_work(proc, thread))     ret = -EAGAIN;   } else    ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread));  } else {   ......  }    ......   while (1) {   uint32_t cmd;   struct binder_transaction_data tr;   struct binder_work *w;   struct binder_transaction *t = NULL;    if (!list_empty(&thread->todo))    w = list_first_entry(&thread->todo, struct binder_work, entry);   else if (!list_empty(&proc->todo) && wait_for_proc_work)    w = list_first_entry(&proc->todo, struct binder_work, entry);   else {    if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */     goto retry;    break;   }    if (end - ptr < sizeof(tr) + 4)    break;    switch (w->type) {   case BINDER_WORK_TRANSACTION: {    t = container_of(w, struct binder_transaction, work);           } break;   ......   }    if (!t)    continue;    BUG_ON(t->buffer == NULL);   if (t->buffer->target_node) {    struct binder_node *target_node = t->buffer->target_node;    tr.target.ptr = target_node->ptr;    tr.cookie = target_node->cookie;    t->saved_priority = task_nice(current);    if (t->priority < target_node->min_priority &&     !(t->flags & TF_ONE_WAY))     binder_set_nice(t->priority);    else if (!(t->flags & TF_ONE_WAY) ||     t->saved_priority > target_node->min_priority)     binder_set_nice(target_node->min_priority);    cmd = BR_TRANSACTION;   } else {    ......   }   tr.code = t->code;   tr.flags = t->flags;   tr.sender_euid = t->sender_euid;    if (t->from) {    struct task_struct *sender = t->from->proc->tsk;    tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns);   } else {    ......   }    tr.data_size = t->buffer->data_size;   tr.offsets_size = t->buffer->offsets_size;   tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;   tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));    if (put_user(cmd, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);   if (copy_to_user(ptr, &tr, sizeof(tr)))    return -EFAULT;   ptr += sizeof(tr);    ......    list_del(&t->work.entry);   t->buffer->allow_user_free = 1;   if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {    t->to_parent = thread->transaction_stack;    t->to_thread = thread;    thread->transaction_stack = t;   } else {    ......   }   break;  }  done:   *consumed = ptr - buffer;  ......  return 0; } 

        這里就是從語句中喚醒了:

                       ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread));  

        Service Manager喚醒過來看,繼續往下執行,進入到while循環中。首先是從proc->todo中取回待處理事項w。這個事項w的類型是BINDER_WORK_TRANSACTION,這是上面調用binder_transaction的時候設置的,于是通過w得到待處理事務t:

                    t = container_of(w, struct binder_transaction, work);  

        接下來的內容,就把cmd和t->buffer的內容拷貝到用戶傳進來的緩沖區去了,這里就是Service Manager從用戶空間傳進來的緩沖區了:

if (put_user(cmd, (uint32_t __user *)ptr))  return -EFAULT; ptr += sizeof(uint32_t); if (copy_to_user(ptr, &tr, sizeof(tr)))  return -EFAULT; ptr += sizeof(tr); 

        注意,這里先是把t->buffer的內容拷貝到本地變量tr中,再拷貝到用戶空間緩沖區去。關于t->buffer內容的拷貝,請參考Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析一文,它的一個關鍵地方是Binder驅動程序和Service Manager守護進程共享了同一個物理內存的內容,拷貝的只是這個物理內存在用戶空間的虛擬地址回去:

                   tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;  
                   tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));  

       對于Binder驅動程序這次操作來說,這個事項就算是處理完了,就要從todo隊列中刪除了:

                    list_del(&t->work.entry);  

       緊接著,還不放刪除這個事務,因為它還要等待Service Manager處理完成后,再進一步處理,因此,放在thread->transaction_stack隊列中:

                   t->to_parent = thread->transaction_stack;  
                   t->to_thread = thread;  
                   thread->transaction_stack = t;  

       還要注意的一個地方是,上面寫入的cmd = BR_TRANSACTION,告訴Service Manager守護進程,它要做什么事情,后面我們會看到相應的分析。

       這樣,binder_thread_read函數就處理完了,回到binder_ioctl函數中,同樣是操作結果寫回到用戶空間的緩沖區中去:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {  ret = -EFAULT;  goto err; } 

       最后,就返回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函數去了:

void binder_loop(struct binder_state *bs, binder_handler func) {  int res;  struct binder_write_read bwr;  unsigned readbuf[32];   bwr.write_size = 0;  bwr.write_consumed = 0;  bwr.write_buffer = 0;    readbuf[0] = BC_ENTER_LOOPER;  binder_write(bs, readbuf, sizeof(unsigned));   for (;;) {   bwr.read_size = sizeof(readbuf);   bwr.read_consumed = 0;   bwr.read_buffer = (unsigned) readbuf;    res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);    if (res < 0) {    LOGE("binder_loop: ioctl failed (%s)/n", strerror(errno));    break;   }    res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func);   if (res == 0) {    LOGE("binder_loop: unexpected reply?!/n");    break;   }   if (res < 0) {    LOGE("binder_loop: io error %d %s/n", res, strerror(errno));    break;   }  } } 

        這里就是從下面的語句:

                      res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);  

        返回來了。接著就進入binder_parse函數處理從Binder驅動程序里面讀取出來的數據:

int binder_parse(struct binder_state *bs, struct binder_io *bio,      uint32_t *ptr, uint32_t size, binder_handler func) {  int r = 1;  uint32_t *end = ptr + (size / 4);   while (ptr < end) {   uint32_t cmd = *ptr++;   switch(cmd) {   ......   case BR_TRANSACTION: {    struct binder_txn *txn = (void *) ptr;    ......    if (func) {     unsigned rdata[256/4];     struct binder_io msg;     struct binder_io reply;     int res;      bio_init(&reply, rdata, sizeof(rdata), 4);     bio_init_from_txn(&msg, txn);     res = func(bs, txn, &msg, &reply);     binder_send_reply(bs, &reply, txn->data, res);    }    ptr += sizeof(*txn) / sizeof(uint32_t);    break;         }   ......   default:    LOGE("parse: OOPS %d/n", cmd);    return -1;   }  }   return r; } 

         前面我們說過,Binder驅動程序寫入到用戶空間的緩沖區中的cmd為BR_TRANSACTION,因此,這里我們只關注BR_TRANSACTION相關的邏輯。

         這里用到的兩個數據結構struct binder_txn和struct binder_io可以參考前面一篇文章Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析,這里就不復述了。

         接著往下看,函數調bio_init來初始化reply變量:

void bio_init(struct binder_io *bio, void *data,     uint32_t maxdata, uint32_t maxoffs) {  uint32_t n = maxoffs * sizeof(uint32_t);   if (n > maxdata) {   bio->flags = BIO_F_OVERFLOW;   bio->data_avail = 0;   bio->offs_avail = 0;   return;  }   bio->data = bio->data0 = data + n;  bio->offs = bio->offs0 = data;  bio->data_avail = maxdata - n;  bio->offs_avail = maxoffs;  bio->flags = 0; } 

        接著又調用bio_init_from_txn來初始化msg變量:

void bio_init_from_txn(struct binder_io *bio, struct binder_txn *txn) {  bio->data = bio->data0 = txn->data;  bio->offs = bio->offs0 = txn->offs;  bio->data_avail = txn->data_size;  bio->offs_avail = txn->offs_size / 4;  bio->flags = BIO_F_SHARED; } 

       最后,真正進行處理的函數是從參數中傳進來的函數指針func,這里就是定義在frameworks/base/cmds/servicemanager/service_manager.c文件中的svcmgr_handler函數:

int svcmgr_handler(struct binder_state *bs,      struct binder_txn *txn,      struct binder_io *msg,      struct binder_io *reply) {  struct svcinfo *si;  uint16_t *s;  unsigned len;  void *ptr;  uint32_t strict_policy;  // LOGI("target=%p code=%d pid=%d uid=%d/n", //   txn->target, txn->code, txn->sender_pid, txn->sender_euid);   if (txn->target != svcmgr_handle)   return -1;   // Equivalent to Parcel::enforceInterface(), reading the RPC  // header with the strict mode policy mask and the interface name.  // Note that we ignore the strict_policy and don't propagate it  // further (since we do no outbound RPCs anyway).  strict_policy = bio_get_uint32(msg);  s = bio_get_string16(msg, &len);  if ((len != (sizeof(svcmgr_id) / 2)) ||   memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {   fprintf(stderr,"invalid id %s/n", str8(s));   return -1;  }   switch(txn->code) {  case SVC_MGR_GET_SERVICE:  case SVC_MGR_CHECK_SERVICE:   s = bio_get_string16(msg, &len);   ptr = do_find_service(bs, s, len);   if (!ptr)    break;   bio_put_ref(reply, ptr);   return 0;   ......  }  default:   LOGE("unknown code %d/n", txn->code);   return -1;  }   bio_put_uint32(reply, 0);  return 0; } 

        這里, Service Manager要處理的code是SVC_MGR_CHECK_SERVICE,這是在前面的BpServiceManager::checkService函數里面設置的。

        回憶一下,在BpServiceManager::checkService時,傳給Binder驅動程序的參數為:

                  writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER);   
                  writeString16("android.os.IServiceManager");    
                  writeString16("media.player");   
 

       這里的語句:

strict_policy = bio_get_uint32(msg); s = bio_get_string16(msg, &len); s = bio_get_string16(msg, &len); 

       其中,會驗證一下傳進來的第二個參數,即"android.os.IServiceManager"是否正確,這個是驗證RPC頭,注釋已經說得很清楚了。

       最后,就是調用do_find_service函數查找是存在名稱為"media.player"的服務了。回憶一下前面一篇文章Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析,MediaPlayerService已經把一個名稱為"media.player"的服務注冊到Service Manager中,所以這里一定能找到。我們看看do_find_service這個函數:

void *do_find_service(struct binder_state *bs, uint16_t *s, unsigned len) {  struct svcinfo *si;  si = find_svc(s, len);  // LOGI("check_service('%s') ptr = %p/n", str8(s), si ? si->ptr : 0);  if (si && si->ptr) {   return si->ptr;  } else {   return 0;  } } 

       這里又調用了find_svc函數:

struct svcinfo *find_svc(uint16_t *s16, unsigned len) {  struct svcinfo *si;   for (si = svclist; si; si = si->next) {   if ((len == si->len) &&    !memcmp(s16, si->name, len * sizeof(uint16_t))) {    return si;   }  }  return 0; } 

       就是在svclist列表中查找對應名稱的svcinfo了。

       然后返回到do_find_service函數中。回憶一下前面一篇文章Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析,這里的si->ptr就是指MediaPlayerService這個Binder實體在Service Manager進程中的句柄值了。

       回到svcmgr_handler函數中,調用bio_put_ref函數將這個Binder引用寫回到reply參數。我們看看bio_put_ref的實現:

void bio_put_ref(struct binder_io *bio, void *ptr) {  struct binder_object *obj;   if (ptr)   obj = bio_alloc_obj(bio);  else   obj = bio_alloc(bio, sizeof(*obj));   if (!obj)   return;   obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;  obj->type = BINDER_TYPE_HANDLE;  obj->pointer = ptr;  obj->cookie = 0; } 

        這里很簡單,就是把一個類型為BINDER_TYPE_HANDLE的binder_object寫入到reply緩沖區中去。這里的binder_object就是相當于是flat_binder_obj了,具體可以參考Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析一文。

        再回到svcmgr_handler函數中,最后,還寫入一個0值到reply緩沖區中,表示操作結果碼:

                  bio_put_uint32(reply, 0);  

        最后返回到binder_parse函數中,調用binder_send_reply函數將操作結果反饋給Binder驅動程序:

void binder_send_reply(struct binder_state *bs,       struct binder_io *reply,       void *buffer_to_free,       int status) {  struct {   uint32_t cmd_free;   void *buffer;   uint32_t cmd_reply;   struct binder_txn txn;  } __attribute__((packed)) data;   data.cmd_free = BC_FREE_BUFFER;  data.buffer = buffer_to_free;  data.cmd_reply = BC_REPLY;  data.txn.target = 0;  data.txn.cookie = 0;  data.txn.code = 0;  if (status) {   data.txn.flags = TF_STATUS_CODE;   data.txn.data_size = sizeof(int);   data.txn.offs_size = 0;   data.txn.data = &status;   data.txn.offs = 0;  } else {   data.txn.flags = 0;   data.txn.data_size = reply->data - reply->data0;   data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0);   data.txn.data = reply->data0;   data.txn.offs = reply->offs0;  }  binder_write(bs, &data, sizeof(data)); } 

        注意,這里的status參數為0。從這里可以看出,binder_send_reply告訴Binder驅動程序執行BC_FREE_BUFFER和BC_REPLY命令,前者釋放之前在binder_transaction分配的空間,地址為buffer_to_free,buffer_to_free這個地址是Binder驅動程序把自己在內核空間用的地址轉換成用戶空間地址再傳給Service Manager的,所以Binder驅動程序拿到這個地址后,知道怎么樣釋放這個空間;后者告訴Binder驅動程序,它的SVC_MGR_CHECK_SERVICE操作已經完成了,要查詢的服務的句柄值也是保存在data.txn.data,操作結果碼是0,也是保存在data.txn.data中。

        再來看binder_write函數:

int binder_write(struct binder_state *bs, void *data, unsigned len) {  struct binder_write_read bwr;  int res;  bwr.write_size = len;  bwr.write_consumed = 0;  bwr.write_buffer = (unsigned) data;  bwr.read_size = 0;  bwr.read_consumed = 0;  bwr.read_buffer = 0;  res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);  if (res < 0) {   fprintf(stderr,"binder_write: ioctl failed (%s)/n",     strerror(errno));  }  return res; } 

        這里可以看出,只有寫操作,沒有讀操作,即read_size為0。

        這里又是一個ioctl的BINDER_WRITE_READ操作。直入到驅動程序的binder_ioctl函數后,執行BINDER_WRITE_READ命令,這里就不累述了。

        最后,從binder_ioctl執行到binder_thread_write函數,首先是執行BC_FREE_BUFFER命令,這個命令的執行在前面一篇文章Android系統進程間通信(IPC)機制Binder中的Server啟動過程源代碼分析已經介紹過了,這里就不再累述了。

        我們重點關注BC_REPLY命令的執行:

int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread,      void __user *buffer, int size, signed long *consumed) {  uint32_t cmd;  void __user *ptr = buffer + *consumed;  void __user *end = buffer + size;   while (ptr < end && thread->return_error == BR_OK) {   if (get_user(cmd, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);   if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) {    binder_stats.bc[_IOC_NR(cmd)]++;    proc->stats.bc[_IOC_NR(cmd)]++;    thread->stats.bc[_IOC_NR(cmd)]++;   }   switch (cmd) {   ......   case BC_TRANSACTION:   case BC_REPLY: {    struct binder_transaction_data tr;     if (copy_from_user(&tr, ptr, sizeof(tr)))     return -EFAULT;    ptr += sizeof(tr);    binder_transaction(proc, thread, &tr, cmd == BC_REPLY);    break;       }    ......   *consumed = ptr - buffer;  }  return 0; } 

        又再次進入到binder_transaction函數:

static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply) {  struct binder_transaction *t;  struct binder_work *tcomplete;  size_t *offp, *off_end;  struct binder_proc *target_proc;  struct binder_thread *target_thread = NULL;  struct binder_node *target_node = NULL;  struct list_head *target_list;  wait_queue_head_t *target_wait;  struct binder_transaction *in_reply_to = NULL;  struct binder_transaction_log_entry *e;  uint32_t return_error;   ......   if (reply) {   in_reply_to = thread->transaction_stack;   if (in_reply_to == NULL) {    ......    return_error = BR_FAILED_REPLY;    goto err_empty_call_stack;   }   ......   thread->transaction_stack = in_reply_to->to_parent;   target_thread = in_reply_to->from;   ......   target_proc = target_thread->proc;  } else {   ......  }  if (target_thread) {   e->to_thread = target_thread->pid;   target_list = &target_thread->todo;   target_wait = &target_thread->wait;  } else {   ......  }     /* TODO: reuse incoming transaction for reply */  t = kzalloc(sizeof(*t), GFP_KERNEL);  if (t == NULL) {   return_error = BR_FAILED_REPLY;   goto err_alloc_t_failed;  }  binder_stats.obj_created[BINDER_STAT_TRANSACTION]++;   tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL);  if (tcomplete == NULL) {   return_error = BR_FAILED_REPLY;   goto err_alloc_tcomplete_failed;  }  ......   if (!reply && !(tr->flags & TF_ONE_WAY))   t->from = thread;  else   t->from = NULL;  t->sender_euid = proc->tsk->cred->euid;  t->to_proc = target_proc;  t->to_thread = target_thread;  t->code = tr->code;  t->flags = tr->flags;  t->priority = task_nice(current);  t->buffer = binder_alloc_buf(target_proc, tr->data_size,   tr->offsets_size, !reply && (t->flags & TF_ONE_WAY));  if (t->buffer == NULL) {   return_error = BR_FAILED_REPLY;   goto err_binder_alloc_buf_failed;  }  t->buffer->allow_user_free = 0;  t->buffer->debug_id = t->debug_id;  t->buffer->transaction = t;  t->buffer->target_node = target_node;  if (target_node)   binder_inc_node(target_node, 1, 0, NULL);   offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *)));   if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) {   binder_user_error("binder: %d:%d got transaction with invalid "    "data ptr/n", proc->pid, thread->pid);   return_error = BR_FAILED_REPLY;   goto err_copy_data_failed;  }  if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) {   binder_user_error("binder: %d:%d got transaction with invalid "    "offsets ptr/n", proc->pid, thread->pid);   return_error = BR_FAILED_REPLY;   goto err_copy_data_failed;  }  ......   off_end = (void *)offp + tr->offsets_size;  for (; offp < off_end; offp++) {   struct flat_binder_object *fp;   ......   fp = (struct flat_binder_object *)(t->buffer->data + *offp);   switch (fp->type) {   ......   case BINDER_TYPE_HANDLE:   case BINDER_TYPE_WEAK_HANDLE: {    struct binder_ref *ref = binder_get_ref(proc, fp->handle);    if (ref == NULL) {     ......     return_error = BR_FAILED_REPLY;     goto err_binder_get_ref_failed;    }    if (ref->node->proc == target_proc) {     ......    } else {     struct binder_ref *new_ref;     new_ref = binder_get_ref_for_node(target_proc, ref->node);     if (new_ref == NULL) {      return_error = BR_FAILED_REPLY;      goto err_binder_get_ref_for_node_failed;     }     fp->handle = new_ref->desc;     binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL);     ......    }   } break;    ......   }  }   if (reply) {   BUG_ON(t->buffer->async_transaction != 0);   binder_pop_transaction(target_thread, in_reply_to);  } else if (!(t->flags & TF_ONE_WAY)) {   ......  } else {   ......  }   t->work.type = BINDER_WORK_TRANSACTION;  list_add_tail(&t->work.entry, target_list);  tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE;  list_add_tail(&tcomplete->entry, &thread->todo);  if (target_wait)   wake_up_interruptible(target_wait);  return;   ...... } 

        這次進入binder_transaction函數的情形和上面介紹的binder_transaction函數的情形基本一致,只是這里的proc、thread和target_proc、target_thread調換了角色,這里的proc和thread指的是Service Manager進程,而target_proc和target_thread指的是剛才請求SVC_MGR_CHECK_SERVICE的進程。

        那么,這次是如何找到target_proc和target_thread呢。首先,我們注意到,這里的reply等于1,其次,上面我們提到,Binder驅動程序在喚醒Service Manager,告訴它有一個事務t要處理時,事務t雖然從Service Manager的todo隊列中刪除了,但是仍然保留在transaction_stack中。因此,這里可以從thread->transaction_stack找回這個等待回復的事務t,然后通過它找回target_proc和target_thread:

in_reply_to = thread->transaction_stack; target_thread = in_reply_to->from; target_list = &target_thread->todo;   target_wait = &target_thread->wait; 

       再接著往下看,由于Service Manager返回來了一個Binder引用,所以這里要處理一下,就是中間的for循環了。這是一個BINDER_TYPE_HANDLE類型的Binder引用,這是前面設置的。先把t->buffer->data的內容轉換為一個struct flat_binder_object對象fp,這里的fp->handle值就是這個Service在Service Manager進程里面的引用值了。接通過調用binder_get_ref函數得到Binder引用對象struct binder_ref類型的對象ref:

                     struct binder_ref *ref = binder_get_ref(proc, fp->handle);  

       這里一定能找到,因為前面MediaPlayerService執行IServiceManager::addService的時候把自己添加到Service Manager的時候,會在Service Manager進程中創建這個Binder引用,然后把這個Binder引用的句柄值返回給Service Manager用戶空間。

       這里面的ref->node->proc不等于target_proc,因為這個Binder實體是屬于創建MediaPlayerService的進程的,而不是請求這個服務的遠程接口的進程的,因此,這里調用binder_get_ref_for_node函數為這個Binder實體在target_proc創建一個引用:

struct binder_ref *new_ref; new_ref = binder_get_ref_for_node(target_proc, ref->node); 

       然后增加引用計數:

                   binder_inc_ref(new_ref, fp->type == BINDER_TYPE_HANDLE, NULL);  

     這樣,返回數據中的Binder對象就處理完成了。注意,這里會把fp->handle的值改為在target_proc中的引用值:

                        fp->handle = new_ref->desc;  

     這里就相當于是把t->buffer->data里面的Binder對象的句柄值改寫了。因為這是在另外一個不同的進程里面的Binder引用,所以句柄值當然要用新的了。這個值最終是要拷貝回target_proc進程的用戶空間去的。

      再往下看:

if (reply) {   BUG_ON(t->buffer->async_transaction != 0);   binder_pop_transaction(target_thread, in_reply_to); } else if (!(t->flags & TF_ONE_WAY)) {   ...... } else {   ...... } 

       這里reply等于1,執行binder_pop_transaction函數把當前事務in_reply_to從target_thread->transaction_stack隊列中刪掉,這是上次調用binder_transaction函數的時候設置的,現在不需要了,所以把它刪掉。

       再往后的邏輯就跟前面執行binder_transaction函數時候一樣了,這里不再介紹。最后的結果就是喚醒請求SVC_MGR_CHECK_SERVICE操作的線程:

                      if (target_wait)  
                                     wake_up_interruptible(target_wait);  

       這樣,Service Manger回復調用SVC_MGR_CHECK_SERVICE請求就算完成了,重新回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函數等待下一個Client請求的到來。事實上,Service Manger回到binder_loop函數再次執行ioctl函數時候,又會再次進入到binder_thread_read函數。這時個會發現thread->todo不為空,這是因為剛才我們調用了:

                        list_add_tail(&tcomplete->entry, &thread->todo);  

       把一個工作項tcompelete放在了在thread->todo中,這個tcompelete的type為BINDER_WORK_TRANSACTION_COMPLETE,因此,Binder驅動程序會執行下面操作:

switch (w->type) { case BINDER_WORK_TRANSACTION_COMPLETE: {  cmd = BR_TRANSACTION_COMPLETE;  if (put_user(cmd, (uint32_t __user *)ptr))   return -EFAULT;  ptr += sizeof(uint32_t);   list_del(&w->entry);  kfree(w);    } break;  ...... } 

       binder_loop函數執行完這個ioctl調用后,才會在下一次調用ioctl進入到Binder驅動程序進入休眠狀態,等待下一次Client的請求。

      上面講到調用請求SVC_MGR_CHECK_SERVICE操作的線程被喚醒了,于是,重新執行binder_thread_read函數:

static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread,      void __user *buffer, int size, signed long *consumed, int non_block) {  void __user *ptr = buffer + *consumed;  void __user *end = buffer + size;   int ret = 0;  int wait_for_proc_work;   if (*consumed == 0) {   if (put_user(BR_NOOP, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);  }  retry:  wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo);   ......   if (wait_for_proc_work) {   ......  } else {   if (non_block) {    if (!binder_has_thread_work(thread))     ret = -EAGAIN;   } else    ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));  }    ......   while (1) {   uint32_t cmd;   struct binder_transaction_data tr;   struct binder_work *w;   struct binder_transaction *t = NULL;    if (!list_empty(&thread->todo))    w = list_first_entry(&thread->todo, struct binder_work, entry);   else if (!list_empty(&proc->todo) && wait_for_proc_work)    w = list_first_entry(&proc->todo, struct binder_work, entry);   else {    if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */     goto retry;    break;   }    ......    switch (w->type) {   case BINDER_WORK_TRANSACTION: {    t = container_of(w, struct binder_transaction, work);           } break;   ......   }    if (!t)    continue;    BUG_ON(t->buffer == NULL);   if (t->buffer->target_node) {    ......   } else {    tr.target.ptr = NULL;    tr.cookie = NULL;    cmd = BR_REPLY;   }   tr.code = t->code;   tr.flags = t->flags;   tr.sender_euid = t->sender_euid;    if (t->from) {    ......   } else {    tr.sender_pid = 0;   }    tr.data_size = t->buffer->data_size;   tr.offsets_size = t->buffer->offsets_size;   tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset;   tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *));    if (put_user(cmd, (uint32_t __user *)ptr))    return -EFAULT;   ptr += sizeof(uint32_t);   if (copy_to_user(ptr, &tr, sizeof(tr)))    return -EFAULT;   ptr += sizeof(tr);    ......    list_del(&t->work.entry);   t->buffer->allow_user_free = 1;   if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) {    ......   } else {    t->buffer->transaction = NULL;    kfree(t);    binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++;   }   break;  }  done:  ......  return 0; } 

        就是從下面這個調用:

                  ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread));  

       被喚醒過來了。在while循環中,從thread->todo得到w,w->type為BINDER_WORK_TRANSACTION,于是,得到t。從上面可以知道,Service Manager返回來了一個Binder引用和一個結果碼0回來,寫在t->buffer->data里面,現在把t->buffer->data加上proc->user_buffer_offset,得到用戶空間地址,保存在tr.data.ptr.buffer里面,這樣用戶空間就可以訪問這個數據了。由于cmd不等于BR_TRANSACTION,這時就可以把t刪除掉了,因為以后都不需要用了。

       執行完這個函數后,就返回到binder_ioctl函數,執行下面語句,把數據返回給用戶空間:

if (copy_to_user(ubuf, &bwr, sizeof(bwr))) {  ret = -EFAULT;  goto err; } 

       接著返回到用戶空間IPCThreadState::talkWithDriver函數,最后返回到IPCThreadState::waitForResponse函數,最終執行到下面語句:

status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) {  int32_t cmd;  int32_t err;   while (1) {   if ((err=talkWithDriver()) < NO_ERROR) break;      ......    cmd = mIn.readInt32();    ......    switch (cmd) {   ......   case BR_REPLY:    {     binder_transaction_data tr;     err = mIn.read(&tr, sizeof(tr));     LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");     if (err != NO_ERROR) goto finish;      if (reply) {      if ((tr.flags & TF_STATUS_CODE) == 0) {       reply->ipcSetDataReference(        reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),        tr.data_size,        reinterpret_cast<const size_t*>(tr.data.ptr.offsets),        tr.offsets_size/sizeof(size_t),        freeBuffer, this);      } else {       ......      }     } else {      ......     }    }    goto finish;    ......   }  }  finish:  ......  return err; } 

       注意,這里的tr.flags等于0,這個是在上面的binder_send_reply函數里設置的。接著就把結果保存在reply了:

reply->ipcSetDataReference(   reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),   tr.data_size,   reinterpret_cast<const size_t*>(tr.data.ptr.offsets),   tr.offsets_size/sizeof(size_t),   freeBuffer, this); 

       我們簡單看一下Parcel::ipcSetDataReference函數的實現:

void Parcel::ipcSetDataReference(const uint8_t* data, size_t dataSize,  const size_t* objects, size_t objectsCount, release_func relFunc, void* relCookie) {  freeDataNoInit();  mError = NO_ERROR;  mData = const_cast<uint8_t*>(data);  mDataSize = mDataCapacity = dataSize;  //LOGI("setDataReference Setting data size of %p to %lu (pid=%d)/n", this, mDataSize, getpid());  mDataPos = 0;  LOGV("setDataReference Setting data pos of %p to %d/n", this, mDataPos);  mObjects = const_cast<size_t*>(objects);  mObjectsSize = mObjectsCapacity = objectsCount;  mNextObjectHint = 0;  mOwner = relFunc;  mOwnerCookie = relCookie;  scanForFds(); } 

        上面提到,返回來的數據中有一個Binder引用,因此,這里的mObjectSize等于1,這個Binder引用對應的位置記錄在mObjects成員變量中。

        從這里層層返回,最后回到BpServiceManager::checkService函數中:

virtual sp<IBinder> BpServiceManager::checkService( const String16& name) const {  Parcel data, reply;  data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor());  data.writeString16(name);  remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);  return reply.readStrongBinder(); } 

        這里就是從:

                 remote()->transact(CHECK_SERVICE_TRANSACTION, data, &reply);  

        返回來了。我們接著看一下reply.readStrongBinder函數的實現:

sp<IBinder> Parcel::readStrongBinder() const {  sp<IBinder> val;  unflatten_binder(ProcessState::self(), *this, &val);  return val; } 

        這里調用了unflatten_binder函數來構造一個Binder對象:

status_t unflatten_binder(const sp<ProcessState>& proc,  const Parcel& in, sp<IBinder>* out) {  const flat_binder_object* flat = in.readObject(false);    if (flat) {   switch (flat->type) {    case BINDER_TYPE_BINDER:     *out = static_cast<IBinder*>(flat->cookie);     return finish_unflatten_binder(NULL, *flat, in);    case BINDER_TYPE_HANDLE:     *out = proc->getStrongProxyForHandle(flat->handle);     return finish_unflatten_binder(      static_cast<BpBinder*>(out->get()), *flat, in);   }    }  return BAD_TYPE; } 

        這里的flat->type是BINDER_TYPE_HANDLE,因此調用ProcessState::getStrongProxyForHandle函數:

sp<IBinder> ProcessState::getStrongProxyForHandle(int32_t handle) {  sp<IBinder> result;   AutoMutex _l(mLock);   handle_entry* e = lookupHandleLocked(handle);   if (e != NULL) {   // We need to create a new BpBinder if there isn't currently one, OR we   // are unable to acquire a weak reference on this current one. See comment   // in getWeakProxyForHandle() for more info about this.   IBinder* b = e->binder;   if (b == NULL || !e->refs->attemptIncWeak(this)) {    b = new BpBinder(handle);    e->binder = b;    if (b) e->refs = b->getWeakRefs();    result = b;   } else {    // This little bit of nastyness is to allow us to add a primary    // reference to the remote proxy when this team doesn't have one    // but another team is sending the handle to us.    result.force_set(b);    e->refs->decWeak(this);   }  }   return result; } 

       這里我們可以看到,ProcessState會把使用過的Binder遠程接口(BpBinder)緩存起來,這樣下次從Service Manager那里請求得到相同的句柄(Handle)時就可以直接返回這個Binder遠程接口了,不用再創建一個出來。這里是第一次使用,因此,e->binder為空,于是創建了一個BpBinder對象:

b = new BpBinder(handle); e->binder = b; if (b) e->refs = b->getWeakRefs(); result = b; 

       最后,函數返回到IMediaDeathNotifier::getMediaPlayerService這里,從這個語句返回:

                   binder = sm->getService(String16("media.player"));  

        這里,就相當于是:

                     binder = new BpBinder(handle);  

        最后,函數調用:

                   sMediaPlayerService = interface_cast<IMediaPlayerService>(binder);  

        到了這里,我們可以參考一下前面一篇文章淺談Android系統進程間通信(IPC)機制Binder中的Server和Client獲得Service Manager,就會知道,這里的interface_cast實際上最終調用了IMediaPlayerService::asInterface函數:

android::sp<IMediaPlayerService> IMediaPlayerService::asInterface(const android::sp<android::IBinder>& obj) {  android::sp<IServiceManager> intr;  if (obj != NULL) {      intr = static_cast<IMediaPlayerService*>(    obj->queryLocalInterface(IMediaPlayerService::descriptor).get());   if (intr == NULL) {    intr = new BpMediaPlayerService(obj);   }  }  return intr; } 

        這里的obj就是BpBinder,而BpBinder::queryLocalInterface返回NULL,因此就創建了一個BpMediaPlayerService對象:

                      intr = new BpMediaPlayerService(new BpBinder(handle));  

        因此,我們最終就得到了一個BpMediaPlayerService對象,達到我們最初的目標。

       有了這個BpMediaPlayerService這個遠程接口之后,MediaPlayer就可以調用MediaPlayerService的服務了。

        至此,Android系統進程間通信(IPC)機制Binder中的Client如何通過Service Manager的getService函數獲得Server遠程接口的過程就分析完了,Binder機制的學習就暫告一段落了。

        不過,細心的讀者可能會發現,我們這里介紹的Binder機制都是基于C/C++語言實現的,但是我們在編寫應用程序都是基于Java語言的,那么,我們如何使用Java語言來使用系統的Binder機制來進行進程間通信呢?這就是下一篇文章要介紹的內容了,敬請關注。

        以上就是對Android IPC Binder Client獲得Server 遠程接口過程的源碼分析,后續繼續補充相關文章,謝謝大家對本站的支持!

發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 洛浦县| 山丹县| 兴和县| 淮滨县| 页游| 汾西县| 深圳市| 芮城县| 霍邱县| 淳安县| 盱眙县| 获嘉县| 额尔古纳市| 乳山市| 隆化县| 福清市| 新宁县| 孝昌县| 文登市| 邯郸县| 东方市| 扎鲁特旗| 民丰县| 阜宁县| 东至县| 增城市| 防城港市| 正安县| 麻城市| 通辽市| 宁陵县| 阿拉善右旗| 集安市| 阿巴嘎旗| 广西| 乐东| 通榆县| 灯塔市| 安庆市| 普定县| 靖安县|