国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁(yè) > 數(shù)據(jù)庫(kù) > SQL Server > 正文

SQL Server 索引基礎(chǔ)知識(shí)(2)----聚集索引,非聚集索引

2024-08-31 00:47:02
字體:
來(lái)源:轉(zhuǎn)載
供稿:網(wǎng)友

由于需要給同事培訓(xùn)數(shù)據(jù)庫(kù)的索引知識(shí),就收集整理了這個(gè)系列的博客。發(fā)表在這里,也是對(duì)索引知識(shí)的一個(gè)總結(jié)回顧吧。通過(guò)總結(jié),我發(fā)現(xiàn)自己以前很多很模糊的概念都清晰了很多。

不論是 聚集索引,還是非聚集索引,都是用B+樹(shù)來(lái)實(shí)現(xiàn)的。我們?cè)诹私膺@兩種索引之前,需要先了解B+樹(shù)。如果你對(duì)B樹(shù)不了解的話,建議參看以下幾篇文章:

BTree,B-Tree,B+Tree,B*Tree都是什么 
http://blog.csdn.net/manesking/archive/2007/02/09/1505979.aspx

B+ 樹(shù)的結(jié)構(gòu)圖:

B+ 樹(shù)的特點(diǎn):

  • 所有關(guān)鍵字都出現(xiàn)在葉子結(jié)點(diǎn)的鏈表中(稠密索引),且鏈表中的關(guān)鍵字恰好是有序的;
  • 不可能在非葉子結(jié)點(diǎn)命中;
  • 非葉子結(jié)點(diǎn)相當(dāng)于是葉子結(jié)點(diǎn)的索引(稀疏索引),葉子結(jié)點(diǎn)相當(dāng)于是存儲(chǔ)(關(guān)鍵字)數(shù)據(jù)的數(shù)據(jù)層;

B+ 樹(shù)中增加一個(gè)數(shù)據(jù),或者刪除一個(gè)數(shù)據(jù),需要分多種情況處理,比較復(fù)雜,這里就不詳述這個(gè)內(nèi)容了。

聚集索引(Clustered Index)

  • 聚集索引的葉節(jié)點(diǎn)就是實(shí)際的數(shù)據(jù)頁(yè)
  • 在數(shù)據(jù)頁(yè)中數(shù)據(jù)按照索引順序存儲(chǔ)
  • 行的物理位置和行在索引中的位置是相同的
  • 每個(gè)表只能有一個(gè)聚集索引
  • 聚集索引的平均大小大約為表大小的5%左右

下面是兩副簡(jiǎn)單描述聚集索引的示意圖:

在聚集索引中執(zhí)行下面語(yǔ)句的的過(guò)程:

select * from table where firstName = 'Ota'

在聚集索引中搜索

一個(gè)比較抽象點(diǎn)的聚集索引圖示:

聚集索引單個(gè)分區(qū)中的結(jié)構(gòu)

 

非聚集索引 (Unclustered Index)

  • 非聚集索引的頁(yè),不是數(shù)據(jù),而是指向數(shù)據(jù)頁(yè)的頁(yè)。
  • 若未指定索引類(lèi)型,則默認(rèn)為非聚集索引
  • 葉節(jié)點(diǎn)頁(yè)的次序和表的物理存儲(chǔ)次序不同
  • 每個(gè)表最多可以有249個(gè)非聚集索引
  • 在非聚集索引創(chuàng)建之前創(chuàng)建聚集索引(否則會(huì)引發(fā)索引重建)

在非聚集索引中執(zhí)行下面語(yǔ)句的的過(guò)程:

select * from employee where lname = 'Green'

Selecting rows using a nonclustered index

一個(gè)比較抽象點(diǎn)的非聚集索引圖示:

非聚集索引的級(jí)別

什么是 Bookmark Lookup

雖然SQL 2005 中已經(jīng)不在提 Bookmark Lookup 了(換湯不換藥),但是我們的很多搜索都是用的這樣的搜索過(guò)程,如下:
先在非聚集中找,然后再在聚集索引中找。

Bookmark Lookup

在 http://www.sqlskills.com/ 提供的一個(gè)例子中,就給我們演示了 Bookmark Lookup 比 Table Scan 慢的情況,例子的腳本如下:

USE CREDITgo-- These samples use the Credit database. You can download and restore the-- credit database from here:-- http://www.sqlskills.com/resources/conferences/CreditBackup80.zip-- NOTE: This is a SQL Server 2000 backup and MANY examples will work on -- SQL Server 2000 in addition to SQL Server 2005.--------------------------------------------------------------------------------- (1) Create two tables which are copies of charge:--------------------------------------------------------------------------------- Create the HEAPSELECT * INTO ChargeHeap FROM Chargego-- Create the CL TableSELECT * INTO ChargeCL FROM ChargegoCREATE CLUSTERED INDEX ChargeCL_CLInd ON ChargeCL (member_no, charge_no)go--------------------------------------------------------------------------------- (2) Add the same non-clustered indexes to BOTH of these tables:--------------------------------------------------------------------------------- Create the NC index on the HEAPCREATE INDEX ChargeHeap_NCInd ON ChargeHeap (Charge_no)go-- Create the NC index on the CL TableCREATE INDEX ChargeCL_NCInd ON ChargeCL (Charge_no)go--------------------------------------------------------------------------------- (3) Begin to query these tables and see what kind of access and I/O returns--------------------------------------------------------------------------------- Get ready for a bit of analysis:SET STATISTICS IO ON-- Turn Graphical Showplan ON (Ctrl+K)-- First, a point query (also, see how a bookmark lookup looks in 2005)SELECT * FROM ChargeHeap WHERE Charge_no = 12345goSELECT * FROM ChargeCL WHERE Charge_no = 12345go-- What if our query is less selective?-- 1000 is .0625% of our data... (1,600,000 million rows)SELECT * FROM ChargeHeap WHERE Charge_no < 1000goSELECT * FROM ChargeCL WHERE Charge_no < 1000go-- What if our query is less selective?-- 16000 is 1% of our data... (1,600,000 million rows)SELECT * FROM ChargeHeap WHERE Charge_no < 16000goSELECT * FROM ChargeCL WHERE Charge_no < 16000go--------------------------------------------------------------------------------- (4) What's the EXACT percentage where the bookmark lookup isn't worth it?--------------------------------------------------------------------------------- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 4000goSELECT * FROM ChargeCL WHERE Charge_no < 4000go-- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 3000goSELECT * FROM ChargeCL WHERE Charge_no < 3000go-- And - you can narrow it down by trying the middle ground:-- What happens here: Table Scan or Bookmark lookup?SELECT * FROM ChargeHeap WHERE Charge_no < 3500goSELECT * FROM ChargeCL WHERE Charge_no < 3500go-- And again:SELECT * FROM ChargeHeap WHERE Charge_no < 3250goSELECT * FROM ChargeCL WHERE Charge_no < 3250go-- And again:SELECT * FROM ChargeHeap WHERE Charge_no < 3375goSELECT * FROM ChargeCL WHERE Charge_no < 3375go-- Don't worry, I won't make you go through it all :)-- For the Heap Table (in THIS case), the cutoff is: 0.21%SELECT * FROM ChargeHeap  WHERE Charge_no < 3383goSELECT * FROM ChargeHeap WHERE Charge_no < 3384go-- For the Clustered Table (in THIS case), the cut-off is: 0.21%SELECT * FROM ChargeCL WHERE Charge_no < 3438SELECT * FROM ChargeCL WHERE Charge_no < 3439go

這個(gè)例子也就是 吳家震 在Teched 2007 上的那個(gè)演示例子。

小結(jié):

這篇博客只是簡(jiǎn)單的用幾個(gè)圖表來(lái)介紹索引的實(shí)現(xiàn)方法:B+數(shù), 聚集索引,非聚集索引,Bookmark Lookup 的信息而已。

參考資料:

表組織和索引組織
http://technet.microsoft.com/zh-cn/library/ms189051.aspx 
http://technet.microsoft.com/en-us/library/ms189051.aspx

How Indexes Work
http://manuals.sybase.com/onlinebooks/group-asarc/asg1200e/aseperf/@Generic__BookTextView/3358

Bookmark Lookup
http://blogs.msdn.com/craigfr/archive/2006/06/30/652639.aspx

Logical and Physical Operators Reference
http://msdn2.microsoft.com/en-us/library/ms191158.aspx

發(fā)表評(píng)論 共有條評(píng)論
用戶(hù)名: 密碼:
驗(yàn)證碼: 匿名發(fā)表
主站蜘蛛池模板: 随州市| 哈密市| 乌拉特后旗| 德清县| 霍州市| 白河县| 灵川县| 百色市| 罗城| 福鼎市| 阳谷县| 阳原县| 高淳县| 宜章县| 峨眉山市| 读书| 金秀| 河源市| 喜德县| 越西县| 尤溪县| 本溪| 金昌市| 萍乡市| 化州市| 鄯善县| 永济市| 大埔县| 水富县| 南通市| 柳州市| 永福县| 枝江市| 九龙坡区| 中超| 青神县| 蓬安县| 久治县| 阿拉善左旗| 青铜峡市| 确山县|