国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁(yè) > 數(shù)據(jù)庫(kù) > Oracle > 正文

Oracle 分析函數(shù)的使用一

2024-08-29 13:51:48
字體:
來(lái)源:轉(zhuǎn)載
供稿:網(wǎng)友
分析函數(shù)是Oracle816引入的一個(gè)全新的概念,為我們分析數(shù)據(jù)提供了一種簡(jiǎn)單高效的處理方式.在分析函數(shù)出現(xiàn)以前,我們必須使用自聯(lián)查詢,子查詢或者內(nèi)聯(lián)視圖,甚至復(fù)雜的存儲(chǔ)過(guò)程實(shí)現(xiàn)的語(yǔ)句,現(xiàn)在只要一條簡(jiǎn)單的sql語(yǔ)句就可以實(shí)現(xiàn)了,而且在執(zhí)行效率方面也有相當(dāng)大的提高.下面我將針對(duì)分析函數(shù)做一些具體的說(shuō)明. 今天我主要給大家介紹一下以下幾個(gè)函數(shù)的使用方法 1.  自動(dòng)匯總函數(shù)rollup,cube, 2.  rank 函數(shù), rank,dense_rank,row_number 3.        lag,lead函數(shù) 4.        sum,avg,的移動(dòng)增加,移動(dòng)平均數(shù) 5.        ratio_to_report報(bào)表處理函數(shù) 6.        first,last取基數(shù)的分析函數(shù) 基礎(chǔ)數(shù)據(jù)   Code:        [Copy to clipboard]06:34:23 SQL> select * from t; BILL_MONTH      AREA_CODE  NET_TYPE       LOCAL_FARE--------------- ---------- ---------- --------------200405          5761       G              7393344.04200405          5761       J              5667089.85200405          5762       G              6315075.96200405          5762       J              6328716.15200405          5763       G              8861742.59200405          5763       J              7788036.32200405          5764       G              6028670.45200405          5764       J              6459121.49200405          5765       G             13156065.77200405          5765       J             11901671.70200406          5761       G              7614587.96200406          5761       J              5704343.05200406          5762       G              6556992.60200406          5762       J              6238068.05200406          5763       G              9130055.46200406          5763       J              7990460.25200406          5764       G              6387706.01200406          5764       J              6907481.66200406          5765       G             13562968.81200406          5765       J             12495492.50200407          5761       G              7987050.65200407          5761       J              5723215.28200407          5762       G              6833096.68200407          5762       J              6391201.44200407          5763       G              9410815.91200407          5763       J              8076677.41200407          5764       G              6456433.23200407          5764       J              6987660.53200407          5765       G             14000101.20200407          5765       J             12301780.20200408          5761       G              8085170.84200408          5761       J              6050611.37200408          5762       G              6854584.22200408          5762       J              6521884.50200408          5763       G              9468707.65200408          5763       J              8460049.43200408          5764       G              6587559.23 BILL_MONTH      AREA_CODE  NET_TYPE       LOCAL_FARE--------------- ---------- ---------- --------------200408          5764       J              7342135.86200408          5765       G             14450586.63200408          5765       J             12680052.38 40 rows selected. Elapsed: 00:00:00.00 1. 使用rollup函數(shù)的介紹 Quote:  下面是直接使用普通sql語(yǔ)句求出各地區(qū)的匯總數(shù)據(jù)的例子06:41:36 SQL> set autot on06:43:36 SQL> select area_code,sum(local_fare) local_fare06:43:50   2  from t06:43:51   3  group by area_code06:43:57   4  union all06:44:00   5  select '合計(jì)' area_code,sum(local_fare) local_fare06:44:06   6  from t06:44:08   7  / AREA_CODE      LOCAL_FARE---------- --------------5761          54225413.045762          52039619.605763          69186545.025764          53156768.465765         104548719.19合計(jì)         333157065.31 6 rows selected. Elapsed: 00:00:00.03 Execution Plan----------------------------------------------------------   0      SELECT STATEMENT Optimizer=ALL_ROWS (Cost=7 Card=1310 Bytes=          24884)    1    0   UNION-ALL   2    1     SORT (GROUP BY) (Cost=5 Card=1309 Bytes=24871)   3    2       TABLE access (FULL) OF 'T' (Cost=2 Card=1309 Bytes=248          71)    4    1     SORT (AGGREGATE)   5    4       TABLE ACCESS (FULL) OF 'T' (Cost=2 Card=1309 Bytes=170          17) Statistics----------------------------------------------------------          0  recursive calls          0  db block gets          6  consistent gets          0  physical reads          0  redo size        561  bytes sent via SQL*Net to client        503  bytes received via SQL*Net from client          2  SQL*Net roundtrips to/from client          1  sorts (memory)          0  sorts (disk)          6  rows PRocessed 下面是使用分析函數(shù)rollup得出的匯總數(shù)據(jù)的例子 06:44:09 SQL> select nvl(area_code,'合計(jì)') area_code,sum(local_fare) local_fare06:45:26   2  from t06:45:30   3  group by rollup(nvl(area_code,'合計(jì)'))06:45:50   4  / AREA_CODE      LOCAL_FARE---------- --------------5761          54225413.045762          52039619.605763          69186545.025764          53156768.465765         104548719.19             333157065.31 6 rows selected. Elapsed: 00:00:00.00 Execution Plan----------------------------------------------------------   0      SELECT STATEMENT Optimizer=ALL_ROWS (Cost=5 Card=1309 Bytes=          24871)    1    0   SORT (GROUP BY ROLLUP) (Cost=5 Card=1309 Bytes=24871)   2    1     TABLE ACCESS (FULL) OF 'T' (Cost=2 Card=1309 Bytes=24871          ) Statistics----------------------------------------------------------          0  recursive calls          0  db block gets          4  consistent gets          0  physical reads          0  redo size        557  bytes sent via SQL*Net to client        503  bytes received via SQL*Net from client          2  SQL*Net roundtrips to/from client          1  sorts (memory)          0  sorts (disk)          6  rows processed 從上面的例子我們不難看出使用rollup函數(shù),系統(tǒng)的sql語(yǔ)句更加簡(jiǎn)單,耗用的資源更少,從6個(gè)consistent gets降到4個(gè)consistent gets,假如基表很大的話,結(jié)果就可想而知了. 1. 使用cube函數(shù)的介紹 Quote: 為了介紹cube函數(shù)我們?cè)賮?lái)看看另外一個(gè)使用rollup的例子 06:53:00 SQL> select area_code,bill_month,sum(local_fare) local_fare06:53:37   2  from t06:53:38   3  group by rollup(area_code,bill_month)06:53:49   4  / AREA_CODE  BILL_MONTH          LOCAL_FARE---------- --------------- --------------5761       200405             13060433.895761       200406             13318931.015761       200407             13710265.935761       200408             14135782.215761                          54225413.045762       200405             12643792.115762       200406             12795060.655762       200407             13224298.125762       200408             13376468.725762                          52039619.605763       200405             16649778.915763       200406             17120515.715763       200407             17487493.325763       200408             17928757.085763                          69186545.025764       200405             12487791.945764       200406             13295187.675764       200407             13444093.765764       200408             13929695.095764                          53156768.465765       200405             25057737.475765       200406             26058461.315765       200407             26301881.405765       200408             27130639.015765                         104548719.19                             333157065.31 26 rows selected. Elapsed: 00:00:00.00 系統(tǒng)只是根據(jù)rollup的第一個(gè)參數(shù)area_code對(duì)結(jié)果集的數(shù)據(jù)做了匯總處理,而沒(méi)有對(duì)bill_month做匯總分析處理,cube函數(shù)就是為了這個(gè)而設(shè)計(jì)的. 下面,讓我們看看使用cube函數(shù)的結(jié)果 06:58:02 SQL> select area_code,bill_month,sum(local_fare) local_fare06:58:30   2  from t06:58:32   3  group by cube(area_code,bill_month)06:58:42   4  order by area_code,bill_month nulls last06:58:57   5  / AREA_CODE  BILL_MONTH          LOCAL_FARE---------- --------------- --------------5761       200405                13060.435761       200406                13318.935761       200407                13710.275761       200408                14135.785761                             54225.415762       200405                12643.795762       200406                12795.065762       200407                13224.305762       200408                13376.475762                             52039.625763       200405                16649.785763       200406                17120.525763       200407                17487.495763       200408                17928.765763                             69186.545764       200405                12487.795764       200406                13295.195764       200407                13444.095764       200408                13929.695764                             53156.775765       200405                25057.745765       200406                26058.465765       200407                26301.885765       200408                27130.645765                            104548.72           200405                79899.53           200406                82588.15           200407                84168.03           200408                86501.34                                333157.05 30 rows selected. Elapsed: 00:00:00.01 可以看到,在cube函數(shù)的輸出結(jié)果比使用rollup多出了幾行統(tǒng)計(jì)數(shù)據(jù).這就是cube函數(shù)根據(jù)bill_month做的匯總統(tǒng)計(jì)結(jié)果]


1 rollup 和 cube函數(shù)的再深入 Quote: 從上面的結(jié)果中我們很輕易發(fā)現(xiàn),每個(gè)統(tǒng)計(jì)數(shù)據(jù)所對(duì)應(yīng)的行都會(huì)出現(xiàn)null,我們?nèi)绾蝸?lái)區(qū)分到底是根據(jù)那個(gè)字段做的匯總呢,這時(shí)候,oracle的grouping函數(shù)就粉墨登場(chǎng)了. 假如當(dāng)前的匯總記錄是利用該字段得出的,grouping函數(shù)就會(huì)返回1,否則返回0   1  select decode(grouping(area_code),1,'all area',to_char(area_code)) area_code,  2         decode(grouping(bill_month),1,'all month',bill_month) bill_month,  3         sum(local_fare) local_fare  4  from t  5  group by cube(area_code,bill_month)  6* order by area_code,bill_month nulls last07:07:29 SQL> / AREA_CODE  BILL_MONTH          LOCAL_FARE---------- --------------- --------------5761       200405                13060.43
5761       200406                13318.935761       200407                13710.275761       200408                14135.785761       all month             54225.415762       200405                12643.795762       200406                12795.065762       200407                13224.305762       200408                13376.475762       all month             52039.625763       200405                16649.785763       200406                17120.525763       200407                17487.49
5763       200408                17928.765763       all month             69186.545764       200405                12487.795764       200406                13295.195764       200407                13444.095764       200408                13929.695764       all month             53156.775765       200405                25057.745765       200406                26058.465765       200407                26301.885765       200408                27130.645765       all month            104548.72
all area   200405                79899.53all area   200406                82588.15all area   200407                84168.03all area   200408                86501.34all area   all month            333157.05 30 rows selected. Elapsed: 00:00:00.0107:07:31 SQL> 可以看到,所有的空值現(xiàn)在都根據(jù)grouping函數(shù)做出了很好的區(qū)分,這樣利用rollup,cube和grouping函數(shù),我們做數(shù)據(jù)統(tǒng)計(jì)的時(shí)候就可以輕松很多了.

發(fā)表評(píng)論 共有條評(píng)論
用戶名: 密碼:
驗(yàn)證碼: 匿名發(fā)表
主站蜘蛛池模板: 冀州市| 开江县| 德兴市| 雅安市| 威信县| 开江县| 旺苍县| 子长县| 涟源市| 历史| 神木县| 偏关县| 荣昌县| 东山县| 个旧市| 左权县| 得荣县| 友谊县| 新龙县| 罗平县| 甘肃省| 谢通门县| 浦城县| 武乡县| 三江| 荣昌县| 五河县| 阿克陶县| 油尖旺区| 龙里县| 繁昌县| 新营市| 遂平县| 九龙城区| 浠水县| 乌什县| 和田市| 华宁县| 资溪县| 灯塔市| 高陵县|