国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

對pandas處理json數據的方法詳解

2020-02-16 01:04:26
字體:
來源:轉載
供稿:網友

今天展示一個利用pandas將json數據導入excel例子,主要利用的是pandas里的read_json函數將json數據轉化為dataframe。

先拿出我要處理的json字符串:

strtext='[{"ttery":"min","issue":"20130801-3391","code":"8,4,5,2,9","code1":"297734529","code2":null,"time":1013395466000},/{"ttery":"min","issue":"20130801-3390","code":"7,8,2,1,2","code1":"298058212","code2":null,"time":1013395406000},/{"ttery":"min","issue":"20130801-3389","code":"5,9,1,2,9","code1":"298329129","code2":null,"time":1013395346000},/{"ttery":"min","issue":"20130801-3388","code":"3,8,7,3,3","code1":"298588733","code2":null,"time":1013395286000},/{"ttery":"min","issue":"20130801-3387","code":"0,8,5,2,7","code1":"298818527","code2":null,"time":1013395226000}]'

pandas.read_json的語法如下:

pandas.read_json(path_or_buf=None, orient=None, typ='frame', dtype=True, convert_axes=True, convert_dates=True, keep_default_dates=True, numpy=False, precise_float=False, date_unit=None, encoding=None, lines=False, chunksize=None, compression='infer')

第一參數就是json文件路徑或者json格式的字符串。

第二參數orient是表明預期的json字符串格式。orient的設置有以下幾個值:

(1).'split' : dict like {index -> [index], columns -> [columns], data -> [values]}

這種就是有索引,有列字段,和數據矩陣構成的json格式。key名稱只能是index,columns和data。

pandas處理json數據

'records' : list like [{column -> value}, ... , {column -> value}]

這種就是成員為字典的列表。如我今天要處理的json數據示例所見。構成是列字段為鍵,值為鍵值,每一個字典成員就構成了dataframe的一行數據。

'index' : dict like {index -> {column -> value}}

以索引為key,以列字段構成的字典為鍵值。如:

pandas處理json數據

'columns' : dict like {column -> {index -> value}}

這種處理的就是以列為鍵,對應一個值字典的對象。這個字典對象以索引為鍵,以值為鍵值構成的json字符串。如下圖所示:

pandas處理json數據

'values' : just the values array。

values這種我們就很常見了。就是一個嵌套的列表。里面的成員也是列表,2層的。

pandas處理json數據

主要就說下這兩個參數吧。下面我們回到示例中來。我們看前面可以發現示例是一個orient為records的json字符串。

這樣就好處理了。看代碼:

# -*- coding: utf-8 -*-"""Created on Sun Aug 5 09:01:38 2018@author: FanXiaoLei"""import pandas as pdstrtext='[{"ttery":"min","issue":"20130801-3391","code":"8,4,5,2,9","code1":"297734529","code2":null,"time":1013395466000},/{"ttery":"min","issue":"20130801-3390","code":"7,8,2,1,2","code1":"298058212","code2":null,"time":1013395406000},/{"ttery":"min","issue":"20130801-3389","code":"5,9,1,2,9","code1":"298329129","code2":null,"time":1013395346000},/{"ttery":"min","issue":"20130801-3388","code":"3,8,7,3,3","code1":"298588733","code2":null,"time":1013395286000},/{"ttery":"min","issue":"20130801-3387","code":"0,8,5,2,7","code1":"298818527","code2":null,"time":1013395226000}]' df=pd.read_json(strtext,orient='records')df.to_excel('pandas處理json.xlsx',index=False,columns=["ttery","issue","code","code1","code2","time"])            
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 鄂托克旗| 石狮市| 集安市| 缙云县| 广元市| 德保县| 封丘县| 浦县| 南陵县| 梁河县| 鄂托克旗| 北碚区| 巴中市| 郁南县| 德昌县| 湘潭市| 朔州市| 宣武区| 白城市| 焦作市| 辽阳县| 巴马| 夏津县| 福泉市| 韩城市| 隆回县| 荥阳市| 望谟县| 额尔古纳市| 岳普湖县| 历史| 固镇县| 黔东| 波密县| 龙州县| 南开区| 高平市| 永春县| 枣庄市| 通化市| 乳山市|