国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

tensorflow 獲取變量&打印權值的實例講解

2020-02-15 21:51:49
字體:
來源:轉載
供稿:網友

在使用tensorflow中,我們常常需要獲取某個變量的值,比如:打印某一層的權重,通常我們可以直接利用變量的name屬性來獲取,但是當我們利用一些第三方的庫來構造神經網絡的layer時,存在一種情況:就是我們自己無法定義該層的變量,因為是自動進行定義的。

比如用tensorflow的slim庫時:

<span style="font-size:14px;">def resnet_stack(images, output_shape, hparams, scope=None):</span><span style="font-size:14px;"> """Create a resnet style transfer block.</span><span style="font-size:14px;"></span><span style="font-size:14px;"> Args:</span><span style="font-size:14px;"> images: [batch-size, height, width, channels] image tensor to feed as input</span><span style="font-size:14px;"> output_shape: output image shape in form [height, width, channels]</span><span style="font-size:14px;"> hparams: hparams objects</span><span style="font-size:14px;"> scope: Variable scope</span><span style="font-size:14px;"></span><span style="font-size:14px;"> Returns:</span><span style="font-size:14px;"> Images after processing with resnet blocks.</span><span style="font-size:14px;"> """</span><span style="font-size:14px;"> end_points = {}</span><span style="font-size:14px;"> if hparams.noise_channel:</span><span style="font-size:14px;"> # separate the noise for visualization</span><span style="font-size:14px;"> end_points['noise'] = images[:, :, :, -1]</span><span style="font-size:14px;"> assert images.shape.as_list()[1:3] == output_shape[0:2]</span><span style="font-size:14px;"></span><span style="font-size:14px;"> with tf.variable_scope(scope, 'resnet_style_transfer', [images]):</span><span style="font-size:14px;"> with slim.arg_scope(</span><span style="font-size:14px;">  [slim.conv2d],</span><span style="font-size:14px;">  normalizer_fn=slim.batch_norm,</span><span style="font-size:14px;">  kernel_size=[hparams.generator_kernel_size] * 2,</span><span style="font-size:14px;">  stride=1):</span><span style="font-size:14px;">  net = slim.conv2d(</span><span style="font-size:14px;">   images,</span><span style="font-size:14px;">   hparams.resnet_filters,</span><span style="font-size:14px;">   normalizer_fn=None,</span><span style="font-size:14px;">   activation_fn=tf.nn.relu)</span><span style="font-size:14px;">  for block in range(hparams.resnet_blocks):</span><span style="font-size:14px;">  net = resnet_block(net, hparams)</span><span style="font-size:14px;">  end_points['resnet_block_{}'.format(block)] = net</span><span style="font-size:14px;"></span><span style="font-size:14px;">  net = slim.conv2d(</span><span style="font-size:14px;">   net,</span><span style="font-size:14px;">   output_shape[-1],</span><span style="font-size:14px;">   kernel_size=[1, 1],</span><span style="font-size:14px;">   normalizer_fn=None,</span><span style="font-size:14px;">   activation_fn=tf.nn.tanh,</span><span style="font-size:14px;">   scope='conv_out')</span><span style="font-size:14px;">  end_points['transferred_images'] = net</span><span style="font-size:14px;"> return net, end_points</span>            
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 柘城县| 长宁区| 上虞市| 启东市| 霞浦县| 社旗县| 肇源县| 沈阳市| 邵阳县| 珠海市| 通化县| 巩留县| 界首市| 南城县| 奎屯市| 封丘县| 迁安市| 诸城市| 文水县| 安仁县| 南部县| 石城县| 芦山县| 酒泉市| 扶余县| 巴彦县| 平度市| 神农架林区| 江孜县| 临汾市| 溧水县| 高碑店市| 象山县| 启东市| 北辰区| 克拉玛依市| 洛浦县| 湖州市| 永城市| 九龙坡区| 三江|