openCV的人臉識別主要通過Haar分類器實現,當然,這是在已有訓練數據的基礎上。openCV安裝在 opencv/opencv/sources/data/haarcascades_cuda(或haarcascades)中存在預先訓練好的物體檢測器(xml格式),包括正臉、側臉、眼睛、微笑、上半身、下半身、全身等。
openCV的的Haar分類器是一個監督分類器,首先對圖像進行直方圖均衡化并歸一化到同樣大小,然后標記里面是否包含要監測的物體。它首先由Paul Viola和Michael Jones設計,稱為Viola Jones檢測器。Viola Jones分類器在級聯的每個節點中使用AdaBoost來學習一個高檢測率低拒絕率的多層樹分類器。它使用了以下一些新的特征:
1. 使用類Haar輸入特征:對矩形圖像區域的和或者差進行閾值化。 
2. 積分圖像技術加速了矩形區域的45°旋轉的值的計算,用來加速類Haar輸入特征的計算。
3. 使用統計boosting來創建兩類問題(人臉和非人臉)的分類器節點(高通過率,低拒絕率)
4. 把弱分類器節點組成篩選式級聯。即,第一組分類器最優,能通過包含物體的圖像區域,同時允許一些不包含物體通過的圖像通過;第二組分
類器次優分類器,也是有較低的拒絕率;以此類推。也就是說,對于每個boosting分類器,只要有人臉都能檢測到,同時拒絕一小部分非人臉,并將其傳給下一個分類器,是為低拒絕率。以此類推,最后一個分類器將幾乎所有的非人臉都拒絕掉,只剩下人臉區域。只要圖像區域通過了整個級聯,則認為里面有物體。
此技術雖然適用于人臉檢測,但不限于人臉檢測,還可用于其他物體的檢測,如汽車、飛機等的正面、側面、后面檢測。在檢測時,先導入訓練好的參數文件,其中haarcascade_frontalface_alt2.xml對正面臉的識別效果較好haarcascade_profileface.xml對側臉的檢測效果較好。當然,如果要達到更高的分類精度,可以收集更多的數據進行訓練,這是后話。
以下代碼基本實現了正臉、眼睛、微笑、側臉的識別,若要添加其他功能,可以自行調整。
// faceDetector.h // This is just the face, eye, smile, profile detector from OpenCV's samples/c directory // /* *************** License:**************************   Jul. 18, 2016   Author: Liuph   Right to use this code in any way you want without warranty, support or any guarantee of it working.     OTHER OPENCV SITES:   * The source code is on sourceforge at:    http://sourceforge.net/projects/opencvlibrary/   * The OpenCV wiki page (As of Oct 1, 2008 this is down for changing over servers, but should come back):    http://opencvlibrary.sourceforge.net/   * An active user group is at:    http://tech.groups.yahoo.com/group/OpenCV/   * The minutes of weekly OpenCV development meetings are at:    http://pr.willowgarage.com/wiki/OpenCV   ************************************************** */  #include "cv.h" #include "highgui.h"  #include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> #include <math.h> #include <float.h> #include <limits.h> #include <time.h> #include <ctype.h> #include <iostream> using namespace std;   static CvMemStorage* storage = 0; static CvHaarClassifierCascade* cascade = 0; static CvHaarClassifierCascade* nested_cascade = 0; static CvHaarClassifierCascade* smile_cascade = 0; static CvHaarClassifierCascade* profile = 0; int use_nested_cascade = 0;  void detect_and_draw( IplImage* image );   /* The path that stores the trained parameter files.   After openCv is installed, the file path is   "opencv/opencv/sources/data/haarcascades_cuda" or "opencv/opencv/sources/data/haarcascades" */ const char* cascade_name =   "../faceDetect/haarcascade_frontalface_alt2.xml"; const char* nested_cascade_name =   "../faceDetect/haarcascade_eye_tree_eyeglasses.xml"; const char* smile_cascade_name =    "../faceDetect/haarcascade_smile.xml"; const char* profile_name =    "../faceDetect/haarcascade_profileface.xml"; double scale = 1;  int faceDetector(const char* imageName, int nNested, int nSmile, int nProfile) {   CvCapture* capture = 0;   IplImage *frame, *frame_copy = 0;   IplImage *image = 0;   const char* scale_opt = "--scale=";   int scale_opt_len = (int)strlen(scale_opt);   const char* cascade_opt = "--cascade=";   int cascade_opt_len = (int)strlen(cascade_opt);   const char* nested_cascade_opt = "--nested-cascade";   int nested_cascade_opt_len = (int)strlen(nested_cascade_opt);   const char* smile_cascade_opt = "--smile-cascade";   int smile_cascade_opt_len = (int)strlen(smile_cascade_opt);   const char* profile_opt = "--profile";   int profile_opt_len = (int)strlen(profile_opt);   int i;   const char* input_name = 0;     int opt_num = 7;   char** opts = new char*[7];   opts[0] = "compile_opencv.exe";   opts[1] = "--scale=1";   opts[2] = "--cascade=1";   if (nNested == 1)     opts[3] = "--nested-cascade=1";   else     opts[3] = "--nested-cascade=0";   if (nSmile == 1)     opts[4] = "--smile-cascade=1";   else     opts[4] = "--smile-cascade=0";   if (nProfile == 1)     opts[5] = "--profile=1";   else     opts[5] = "--profile=0";   opts[6] = (char*)imageName;        for( i = 1; i < opt_num; i++ )   {     if( strncmp( opts[i], cascade_opt, cascade_opt_len) == 0)     {       cout<<"cascade: "<<cascade_name<<endl;     }     else if( strncmp( opts[i], nested_cascade_opt, nested_cascade_opt_len ) == 0)     {       if( opts[i][nested_cascade_opt_len + 1] == '1')       {         cout<<"nested: "<<nested_cascade_name<<endl;         nested_cascade = (CvHaarClassifierCascade*)cvLoad( nested_cascade_name, 0, 0, 0 );       }       if( !nested_cascade )         fprintf( stderr, "WARNING: Could not load classifier cascade for nested objects/n" );     }     else if( strncmp( opts[i], scale_opt, scale_opt_len ) == 0 )     {       cout<< "scale: "<< scale<<endl;       if( !sscanf( opts[i] + scale_opt_len, "%lf", &scale ) || scale < 1 )         scale = 1;     }     else if (strncmp( opts[i], smile_cascade_opt, smile_cascade_opt_len ) == 0)     {       if( opts[i][smile_cascade_opt_len + 1] == '1')       {         cout<<"smile: "<<smile_cascade_name<<endl;         smile_cascade = (CvHaarClassifierCascade*)cvLoad( smile_cascade_name, 0, 0, 0 );       }       if( !smile_cascade )         fprintf( stderr, "WARNING: Could not load classifier cascade for smile objects/n" );     }     else if (strncmp( opts[i], profile_opt, profile_opt_len ) == 0)     {       if( opts[i][profile_opt_len + 1] == '1')       {         cout<<"profile: "<<profile_name<<endl;         profile = (CvHaarClassifierCascade*)cvLoad( profile_name, 0, 0, 0 );       }       if( !profile )         fprintf( stderr, "WARNING: Could not load classifier cascade for profile objects/n" );     }     else if( opts[i][0] == '-' )     {       fprintf( stderr, "WARNING: Unknown option %s/n", opts[i] );     }     else     {       input_name = imageName;       printf("input_name: %s/n", imageName);     }   }    cascade = (CvHaarClassifierCascade*)cvLoad( cascade_name, 0, 0, 0 );    if( !cascade )   {     fprintf( stderr, "ERROR: Could not load classifier cascade/n" );     fprintf( stderr,     "Usage: facedetect [--cascade=/"<cascade_path>/"]/n"     "  [--nested-cascade[=/"nested_cascade_path/"]]/n"     "  [--scale[=<image scale>/n"     "  [filename|camera_index]/n" );     return -1;   }   storage = cvCreateMemStorage(0);      if( !input_name || (isdigit(input_name[0]) && input_name[1] == '/0') )     capture = cvCaptureFromCAM( !input_name ? 0 : input_name[0] - '0' );   else if( input_name )   {     image = cvLoadImage( input_name, 1 );     if( !image )       capture = cvCaptureFromAVI( input_name );   }   else     image = cvLoadImage( "../lena.jpg", 1 );    cvNamedWindow( "result", 1 );    if( capture )   {     for(;;)     {       if( !cvGrabFrame( capture ))         break;       frame = cvRetrieveFrame( capture );       if( !frame )         break;       if( !frame_copy )         frame_copy = cvCreateImage( cvSize(frame->width,frame->height),                       IPL_DEPTH_8U, frame->nChannels );       if( frame->origin == IPL_ORIGIN_TL )         cvCopy( frame, frame_copy, 0 );       else         cvFlip( frame, frame_copy, 0 );              detect_and_draw( frame_copy );        if( cvWaitKey( 10 ) >= 0 )         goto _cleanup_;     }      cvWaitKey(0); _cleanup_:     cvReleaseImage( &frame_copy );     cvReleaseCapture( &capture );   }   else   {     if( image )     {       detect_and_draw( image );       cvWaitKey(0);       cvReleaseImage( &image );     }     else if( input_name )     {       /* assume it is a text file containing the         list of the image filenames to be processed - one per line */       FILE* f = fopen( input_name, "rt" );       if( f )       {         char buf[1000+1];         while( fgets( buf, 1000, f ) )         {           int len = (int)strlen(buf), c;           while( len > 0 && isspace(buf[len-1]) )             len--;           buf[len] = '/0';           printf( "file %s/n", buf );            image = cvLoadImage( buf, 1 );           if( image )           {             detect_and_draw( image );             c = cvWaitKey(0);             if( c == 27 || c == 'q' || c == 'Q' )               break;             cvReleaseImage( &image );           }         }         fclose(f);       }     }   }      cvDestroyWindow("result");    return 0; }  void detect_and_draw( IplImage* img ) {   static CvScalar colors[] =    {     {{0,0,255}},     {{0,128,255}},     {{0,255,255}},     {{0,255,0}},     {{255,128,0}},     {{255,255,0}},     {{255,0,0}},     {{255,0,255}}   };    IplImage *gray, *small_img;   int i, j;    gray = cvCreateImage( cvSize(img->width,img->height), 8, 1 );   small_img = cvCreateImage( cvSize( cvRound (img->width/scale),              cvRound (img->height/scale)), 8, 1 );    cvCvtColor( img, gray, CV_BGR2GRAY );   cvResize( gray, small_img, CV_INTER_LINEAR );   cvEqualizeHist( small_img, small_img );   cvClearMemStorage( storage );    if( cascade )   {     double t = (double)cvGetTickCount();     CvSeq* faces = cvHaarDetectObjects( small_img, cascade, storage,                       1.1, 2, 0                       //|CV_HAAR_FIND_BIGGEST_OBJECT                       //|CV_HAAR_DO_ROUGH_SEARCH                       |CV_HAAR_DO_CANNY_PRUNING                       //|CV_HAAR_SCALE_IMAGE                       ,                       cvSize(30, 30) );     t = (double)cvGetTickCount() - t;     printf( "faces detection time = %gms/n", t/((double)cvGetTickFrequency()*1000.) );     for( i = 0; i < (faces ? faces->total : 0); i++ )     {       CvRect* r = (CvRect*)cvGetSeqElem( faces, i );       CvMat small_img_roi;       CvSeq* nested_objects;       CvSeq* smile_objects;       CvPoint center;       CvScalar color = colors[i%8];       int radius;       center.x = cvRound((r->x + r->width*0.5)*scale);       center.y = cvRound((r->y + r->height*0.5)*scale);       radius = cvRound((r->width + r->height)*0.25*scale);       cvCircle( img, center, radius, color, 3, 8, 0 );        //eye       if( nested_cascade != 0)       {         cvGetSubRect( small_img, &small_img_roi, *r );         nested_objects = cvHaarDetectObjects( &small_img_roi, nested_cascade, storage,           1.1, 2, 0           //|CV_HAAR_FIND_BIGGEST_OBJECT           //|CV_HAAR_DO_ROUGH_SEARCH           //|CV_HAAR_DO_CANNY_PRUNING           //|CV_HAAR_SCALE_IMAGE           ,           cvSize(0, 0) );         for( j = 0; j < (nested_objects ? nested_objects->total : 0); j++ )         {           CvRect* nr = (CvRect*)cvGetSeqElem( nested_objects, j );           center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);           center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);           radius = cvRound((nr->width + nr->height)*0.25*scale);           cvCircle( img, center, radius, color, 3, 8, 0 );         }       }       //smile       if (smile_cascade != 0)       {         cvGetSubRect( small_img, &small_img_roi, *r );         smile_objects = cvHaarDetectObjects( &small_img_roi, smile_cascade, storage,           1.1, 2, 0           //|CV_HAAR_FIND_BIGGEST_OBJECT           //|CV_HAAR_DO_ROUGH_SEARCH           //|CV_HAAR_DO_CANNY_PRUNING           //|CV_HAAR_SCALE_IMAGE           ,           cvSize(0, 0) );         for( j = 0; j < (smile_objects ? smile_objects->total : 0); j++ )         {           CvRect* nr = (CvRect*)cvGetSeqElem( smile_objects, j );           center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);           center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);           radius = cvRound((nr->width + nr->height)*0.25*scale);           cvCircle( img, center, radius, color, 3, 8, 0 );         }       }     }   }    if( profile )   {     double t = (double)cvGetTickCount();     CvSeq* faces = cvHaarDetectObjects( small_img, profile, storage,       1.1, 2, 0       //|CV_HAAR_FIND_BIGGEST_OBJECT       //|CV_HAAR_DO_ROUGH_SEARCH       |CV_HAAR_DO_CANNY_PRUNING       //|CV_HAAR_SCALE_IMAGE       ,       cvSize(30, 30) );     t = (double)cvGetTickCount() - t;     printf( "profile faces detection time = %gms/n", t/((double)cvGetTickFrequency()*1000.) );     for( i = 0; i < (faces ? faces->total : 0); i++ )     {       CvRect* r = (CvRect*)cvGetSeqElem( faces, i );       CvMat small_img_roi;       CvSeq* nested_objects;       CvSeq* smile_objects;       CvPoint center;       CvScalar color = colors[(7-i)%8];       int radius;       center.x = cvRound((r->x + r->width*0.5)*scale);       center.y = cvRound((r->y + r->height*0.5)*scale);       radius = cvRound((r->width + r->height)*0.25*scale);       cvCircle( img, center, radius, color, 3, 8, 0 );        //eye       if( nested_cascade != 0)       {         cvGetSubRect( small_img, &small_img_roi, *r );         nested_objects = cvHaarDetectObjects( &small_img_roi, nested_cascade, storage,           1.1, 2, 0           //|CV_HAAR_FIND_BIGGEST_OBJECT           //|CV_HAAR_DO_ROUGH_SEARCH           //|CV_HAAR_DO_CANNY_PRUNING           //|CV_HAAR_SCALE_IMAGE           ,           cvSize(0, 0) );         for( j = 0; j < (nested_objects ? nested_objects->total : 0); j++ )         {           CvRect* nr = (CvRect*)cvGetSeqElem( nested_objects, j );           center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);           center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);           radius = cvRound((nr->width + nr->height)*0.25*scale);           cvCircle( img, center, radius, color, 3, 8, 0 );         }       }       //smile       if (smile_cascade != 0)       {         cvGetSubRect( small_img, &small_img_roi, *r );         smile_objects = cvHaarDetectObjects( &small_img_roi, smile_cascade, storage,           1.1, 2, 0           //|CV_HAAR_FIND_BIGGEST_OBJECT           //|CV_HAAR_DO_ROUGH_SEARCH           //|CV_HAAR_DO_CANNY_PRUNING           //|CV_HAAR_SCALE_IMAGE           ,           cvSize(0, 0) );         for( j = 0; j < (smile_objects ? smile_objects->total : 0); j++ )         {           CvRect* nr = (CvRect*)cvGetSeqElem( smile_objects, j );           center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);           center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);           radius = cvRound((nr->width + nr->height)*0.25*scale);           cvCircle( img, center, radius, color, 3, 8, 0 );         }       }     }   }    cvShowImage( "result", img );   cvReleaseImage( &gray );   cvReleaseImage( &small_img ); } //main.cpp //openCV配置 //附加包含目錄: include, include/opencv, include/opencv2 //附加庫目錄: lib  //附加依賴項: debug:--> opencv_calib3d243d.lib;...; //     release:--> opencv_calib3d243.lib;...;  #include<string> #include <opencv2/opencv.hpp>  #include "CV2_compile.h" #include "CV_compile.h"  #include "face_detector.h"  using namespace cv; using namespace std;  int main(int argc, char** argv) {   const char* imagename = "../lena.jpg";   faceDetector(imagename,1,0,0);    return 0; } 調整主函數中faceDetect(const char* imageName, int nNested, int nSmile, int nProfile)函數中的參數,分別表示圖像文件名,是否檢測眼睛,是否檢測微笑,是否檢測側臉。以檢測正臉、眼睛為例:

再來看一張合影。

========華麗麗的分割線==========
如果對分類器的參數不滿意,或者說想識別其他的物體例如車、人、飛機、蘋果等等等等,只需要選擇適當的樣本訓練,獲取該物體的各個方面的參數,訓練過程可以通過openCV的haartraining實現(參考haartraining參考文檔,opencv/apps/traincascade),主要包括個步驟:
1. 收集打算學習的物體數據集(如正面人臉圖,側面汽車圖等, 1000~10000個正樣本為宜),把它們存儲在一個或多個目錄下面。
2. 使用createsamples來建立正樣本的向量輸出文件,通過這個文件可以重復訓練過程,使用同一個向量輸出文件嘗試各種參數。
3. 獲取負樣本,即不包含該物體的圖像。
4. 訓練。命令行實現。
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持武林網。
新聞熱點
疑難解答
圖片精選