前言
ROC(Receiver Operating Characteristic)曲線和AUC常被用來評價一個二值分類器(binary classifier)的優劣。這篇文章將先簡單的介紹ROC和AUC,而后用實例演示如何python作出ROC曲線圖以及計算AUC。
AUC介紹
AUC(Area Under Curve)是機器學習二分類模型中非常常用的評估指標,相比于F1-Score對項目的不平衡有更大的容忍性,目前常見的機器學習庫中(比如scikit-learn)一般也都是集成該指標的計算,但是有時候模型是單獨的或者自己編寫的,此時想要評估訓練模型的好壞就得自己搞一個AUC計算模塊,本文在查詢資料時發現libsvm-tools有一個非常通俗易懂的auc計算,因此摳出來用作日后之用。
AUC計算
AUC的計算分為下面三個步驟:
1、計算數據的準備,如果模型訓練時只有訓練集的話一般使用交叉驗證的方式來計算,如果有評估集(evaluate)一般就可以直接計算了,數據的格式一般就是需要預測得分以及其目標類別(注意是目標類別,不是預測得到的類別)
2、根據閾值劃分得到橫(X:False Positive Rate)以及縱(Y:True Positive Rate)點
3、將坐標點連成曲線之后計算其曲線下面積,就是AUC的值
直接上python代碼
#! -*- coding=utf-8 -*-import pylab as plfrom math import log,exp,sqrtevaluate_result="you file path"db = [] #[score,nonclk,clk]pos, neg = 0, 0 with open(evaluate_result,'r') as fs: for line in fs: nonclk,clk,score = line.strip().split('/t') nonclk = int(nonclk) clk = int(clk) score = float(score) db.append([score,nonclk,clk]) pos += clk neg += nonclk db = sorted(db, key=lambda x:x[0], reverse=True)#計算ROC坐標點xy_arr = []tp, fp = 0., 0. for i in range(len(db)): tp += db[i][2] fp += db[i][1] xy_arr.append([fp/neg,tp/pos])#計算曲線下面積auc = 0. prev_x = 0for x,y in xy_arr: if x != prev_x: auc += (x - prev_x) * y prev_x = xprint "the auc is %s."%aucx = [_v[0] for _v in xy_arr]y = [_v[1] for _v in xy_arr]pl.title("ROC curve of %s (AUC = %.4f)" % ('svm',auc))pl.xlabel("False Positive Rate")pl.ylabel("True Positive Rate")pl.plot(x, y)# use pylab to plot x and ypl.show()# show the plot on the screen輸入的數據集可以參考svm預測結果
其格式為:
nonclk /t clk /t score
其中:
1、nonclick:未點擊的數據,可以看做負樣本的數量
2、clk:點擊的數量,可以看做正樣本的數量
3、score:預測的分數,以該分數為group進行正負樣本的預統計可以減少AUC的計算量
運行的結果為:

如果本機沒安裝pylab可以直接注釋依賴以及畫圖部分
注意
上面貼的代碼:
1、只能計算二分類的結果(至于二分類的標簽隨便處理)
2、上面代碼中每個score都做了一次閾值,其實這樣效率是相當低的,可以對樣本進行采樣或者在計算橫軸坐標時進行等分計算
總結
以上就是這篇文章的全部內容,希望本文的內容能對大家的學習或者工作帶來一定的幫助,如果有疑問大家可以留言交流。
新聞熱點
疑難解答