国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

Python_LDA實現方法詳解

2020-01-04 16:39:27
字體:
來源:轉載
供稿:網友

LDA(Latent Dirichlet allocation)模型是一種常用而用途廣泛地概率主題模型。其實現一般通過Variational inference和Gibbs Samping實現。作者在提出LDA模型時給出了其變分推理的C源碼(后續貼出C++改編的類),這里貼出基于Python的第三方模塊改寫的LDA類及實現。

#coding:utf-8import numpy as npimport ldaimport lda.datasetsimport jiebaimport codecsclass LDA_v20161130():  def __init__(self, topics=2):    self.n_topic = topics    self.corpus = None    self.vocab = None    self.ppCountMatrix = None    self.stop_words = [u',', u'。', u'、', u'(', u')', u'·', u'!', u' ', u':', u'“', u'”', u'/n']    self.model = None  def loadCorpusFromFile(self, fn):    # 中文分詞    f = open(fn, 'r')    text = f.readlines()    text = r' '.join(text)    seg_generator = jieba.cut(text)    seg_list = [i for i in seg_generator if i not in self.stop_words]    seg_list = r' '.join(seg_list)    # 切割統計所有出現的詞納入詞典    seglist = seg_list.split(" ")    self.vocab = []    for word in seglist:      if (word != u' ' and word not in self.vocab):        self.vocab.append(word)    CountMatrix = []    f.seek(0, 0)    # 統計每個文檔中出現的詞頻    for line in f:      # 置零      count = np.zeros(len(self.vocab),dtype=np.int)      text = line.strip()      # 但還是要先分詞      seg_generator = jieba.cut(text)      seg_list = [i for i in seg_generator if i not in self.stop_words]      seg_list = r' '.join(seg_list)      seglist = seg_list.split(" ")      # 查詢詞典中的詞出現的詞頻      for word in seglist:        if word in self.vocab:          count[self.vocab.index(word)] += 1      CountMatrix.append(count)    f.close()    #self.ppCountMatrix = (len(CountMatrix), len(self.vocab))    self.ppCountMatrix = np.array(CountMatrix)    print "load corpus from %s success!"%fn  def setStopWords(self, word_list):    self.stop_words = word_list  def fitModel(self, n_iter = 1500, _alpha = 0.1, _eta = 0.01):    self.model = lda.LDA(n_topics=self.n_topic, n_iter=n_iter, alpha=_alpha, eta= _eta, random_state= 1)    self.model.fit(self.ppCountMatrix)  def printTopic_Word(self, n_top_word = 8):    for i, topic_dist in enumerate(self.model.topic_word_):      topic_words = np.array(self.vocab)[np.argsort(topic_dist)][:-(n_top_word + 1):-1]      print "Topic:",i,"/t",      for word in topic_words:        print word,      print  def printDoc_Topic(self):    for i in range(len(self.ppCountMatrix)):      print ("Doc %d:((top topic:%s) topic distribution:%s)"%(i, self.model.doc_topic_[i].argmax(),self.model.doc_topic_[i]))  def printVocabulary(self):    print "vocabulary:"    for word in self.vocab:      print word,    print  def saveVocabulary(self, fn):    f = codecs.open(fn, 'w', 'utf-8')    for word in self.vocab:      f.write("%s/n"%word)    f.close()  def saveTopic_Words(self, fn, n_top_word = -1):    if n_top_word==-1:      n_top_word = len(self.vocab)    f = codecs.open(fn, 'w', 'utf-8')    for i, topic_dist in enumerate(self.model.topic_word_):      topic_words = np.array(self.vocab)[np.argsort(topic_dist)][:-(n_top_word + 1):-1]      f.write( "Topic:%d/t"%i)      for word in topic_words:        f.write("%s "%word)      f.write("/n")    f.close()  def saveDoc_Topic(self, fn):    f = codecs.open(fn, 'w', 'utf-8')    for i in range(len(self.ppCountMatrix)):      f.write("Doc %d:((top topic:%s) topic distribution:%s)/n" % (i, self.model.doc_topic_[i].argmax(), self.model.doc_topic_[i]))    f.close()

算法實現demo:

例如,抓取BBC川普當選的新聞作為語料,輸入以下代碼:

if __name__=="__main__":  _lda = LDA_v20161130(topics=20)  stop = [u'!', u'@', u'#', u',',u'.',u'/',u';',u' ',u'[',u']',u'$',u'%',u'^',u'&',u'*',u'(',u')',      u'"',u':',u'<',u'>',u'?',u'{',u'}',u'=',u'+',u'_',u'-',u'''''']  _lda.setStopWords(stop)  _lda.loadCorpusFromFile(u'C://Users/Administrator/Desktop//BBC.txt')  _lda.fitModel(n_iter=1500)  _lda.printTopic_Word(n_top_word=10)  _lda.printDoc_Topic()  _lda.saveVocabulary(u'C://Users/Administrator/Desktop//vocab.txt')  _lda.saveTopic_Words(u'C://Users/Administrator/Desktop//topic_word.txt')  _lda.saveDoc_Topic(u'C://Users/Administrator/Desktop//doc_topic.txt')

因為語料全部為英文,因此這里的stop_words全部設置為英文符號,主題設置20個,迭代1500次。結果顯示,文檔148篇,詞典1347詞,總詞數4174,在i3的電腦上運行17s。
Topic_words部分輸出如下:

Topic: 0
to will and of he be trumps the what policy
Topic: 1 he would in said not no with mr this but
Topic: 2 for or can some whether have change health obamacare insurance
Topic: 3 the to that president as of us also first all
Topic: 4 trump to when with now were republican mr office presidential
Topic: 5 the his trump from uk who president to american house
Topic: 6 a to that was it by issue vote while marriage
Topic: 7 the to of an are they which by could from
Topic: 8 of the states one votes planned won two new clinton
Topic: 9 in us a use for obama law entry new interview
Topic: 10 and on immigration has that there website vetting action given

Doc_Topic部分輸出如下:

Doc 0:((top topic:4) topic distribution:[ 0.02972973 0.0027027 0.0027027 0.16486486 0.32702703 0.19189189
0.0027027 0.0027027 0.02972973 0.0027027 0.02972973 0.0027027
0.0027027 0.0027027 0.02972973 0.0027027 0.02972973 0.0027027
0.13783784 0.0027027 ])
Doc 1:((top topic:18) topic distribution:[ 0.21 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.11 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.31 0.21])
Doc 2:((top topic:18) topic distribution:[ 0.02075472 0.00188679 0.03962264 0.00188679 0.00188679 0.00188679
0.00188679 0.15283019 0.00188679 0.02075472 0.00188679 0.24716981
0.00188679 0.07735849 0.00188679 0.00188679 0.00188679 0.00188679
0.41698113 0.00188679])

當然,對于英文語料,需要排除大部分的虛詞以及常用無意義詞,例如it, this, there, that...在實際操作中,需要合理地設置參數。

換中文語料嘗試,采用習大大就卡斯特羅逝世發表的吊唁文章和樸槿惠辭職的新聞。

Topic: 0
的 同志 和 人民 卡斯特羅 菲德爾 古巴 他 了 我
Topic: 1 在 樸槿惠 向 表示 總統 對 將 的 月 國民
Doc 0:((top topic:0) topic distribution:[ 0.91714123 0.08285877])
Doc 1:((top topic:1) topic distribution:[ 0.09200666 0.90799334])

還是存在一些虛詞,例如“的”,“和”,“了”,“對”等詞的干擾,但是大致來說,兩則新聞的主題分布很明顯,效果還不賴。

總結

以上就是本文關于Python_LDA實現方法詳解的全部內容,希望對大家有所幫助。有什么問題可以隨時留言,歡迎大家一起交流討論。感謝朋友們對本站的支持!


注:相關教程知識閱讀請移步到python教程頻道。
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 安远县| 尼玛县| 邛崃市| 武汉市| 利津县| 巴林右旗| 通山县| 临澧县| 小金县| 红河县| 纳雍县| 上蔡县| 徐闻县| 方城县| 临沂市| 五常市| 贺兰县| 汽车| 东丽区| 巴青县| 永清县| 织金县| 西盟| 盘锦市| 广昌县| 阿勒泰市| 昆山市| 胶州市| 延津县| 龙山县| 汉阴县| 乐亭县| 祁连县| 梓潼县| 沙洋县| 曲靖市| 华安县| 永嘉县| 封丘县| 玉环县| 含山县|