人工智能是一種未來性的技術,目前正在致力于研究自己的一套工具。一系列的進展在過去的幾年中發生了:無事故駕駛超過300000英里并在三個州合法行駛迎來了自動駕駛的一個里程碑;IBM Waston擊敗了Jeopardy兩屆冠軍;統計學習技術從對消費者興趣到以萬億記的圖像的復雜數據集進行模式識別。
這些發展必然提高了科學家和巨匠們對人工智能的興趣,這也使得開發者們了解創建人工智能應用的真實本質。開發這些需要注意的第一件事是:
哪一種編程語言適合人工智能?
你所熟練掌握的每一種編程語言都可以是人工智能的開發語言。
人工智能程序可以使用幾乎所有的編程語言實現,最常見的有:Lisp,Prolog,C/C++,近來又有Java,最近還有Python.
LISP
像LISP這樣的高級語言在人工智能中備受青睞,因為在各高校多年的研究后選擇了快速原型而舍棄了快速執行。垃圾收集,動態類型,數據函數,統一的語法,交互式環境和可擴展性等一些特性使得LIST非常適合人工智能編程。
PROLOG
這種語言有著LISP高層和傳統優勢有效結合,這對AI是非常有用的。它的優勢是解決“基于邏輯的問題”。Prolog提供了針對于邏輯相關問題的解決方案,或者說它的解決方案有著簡潔的邏輯特征。它的主要缺點(恕我直言)是學起來很難。
C/C++
就像獵豹一樣,C/C++主要用于對執行速度要求很高的時候。它主要用于簡單程序,統計人工智能,如神經網絡就是一個常見的例子。Backpropagation 只用了幾頁的C/C++代碼,但是要求速度,哪怕程序員只能提升一點點速度也是好的。
JAVA
新來者,Java使用了LISP中的幾個理念,最明顯的是垃圾收集。它的可移植性使它可以適用于任何程序,它還有一套內置類型。Java沒有LISP和Prolog高級,又沒有C那樣快,但如果要求可移植性那它是最好的。
PYTHON
Python是一種用LISP和JAVA編譯的語言。按照Norvig文章中對Lips和Python的比較,這兩種語言彼此非常相似,僅有一些細小的差別。還有JPthon,提供了訪問Java圖像用戶界面的途徑。這是PeterNorvig選擇用JPyhton翻譯他人工智能書籍中程序的的原因。JPython可以讓他使用可移植的GUI演示,和可移植的http/ftp/html庫。因此,它非常適合作為人工智能語言的。
在人工智能上使用Python比其他編程語言的好處
AI的Python庫
總體的AI庫
機器學習庫
自然語言和文本處理庫
NLTK 開源的Python模塊,語言學數據和文檔,用來研究和開發自然語言處理和文本分析。有windows,Mac OSX和Linux版本。
案例
做了一個實驗,一個使用人工智能和物聯網做員工行為分析的軟件。該軟件通過員工情緒和行為的分心提供了一個有用的反饋給員工,從而提高了管理和工作習慣。
使用Python機器學習庫,opencv和haarcascading概念來培訓。建立了樣品POC來檢測通過安置在不同地點的無線攝像頭傳遞回來基礎情感像幸福,生氣,悲傷,厭惡,懷疑,蔑視,譏諷和驚喜。收集到的數據會集中到云數據庫中,甚至整個辦公室都可以通過在Android設備或桌面點擊一個按鈕來取回。
開發者在深入分析臉部情感上復雜點和挖掘更多的細節中取得進步。在深入學習算法和機器學習的幫助下,可以幫助分析員工個人績效和適當的員工/團隊反饋。
結論
python因為提供像 scikit-learn的好的框架,在人工智能方面扮演了一個重要的角色:Python中的機器學習,實現了這一領域中大多的需求。D3.js JS中數據驅動文檔時可視化最強大和易于使用的工具之一。
處理框架,它的快速原型制造使得它成為一門不可忽視的重要語言。AI需要大量的研究,因此沒有必要要求一個500KB的Java樣板代碼去測試新的假說。python中幾乎每一個想法都可以迅速通過20-30行代碼來實現(JS和LISP也是一樣)。
因此,它對于人工智能是一門非常有用的語言。
內容來源:北京達內教育
新聞熱點
疑難解答