国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

TensorFlow實現創建分類器

2020-01-04 15:57:00
字體:
來源:轉載
供稿:網友

本文實例為大家分享了TensorFlow實現創建分類器的具體代碼,供大家參考,具體內容如下

創建一個iris數據集的分類器。

加載樣本數據集,實現一個簡單的二值分類器來預測一朵花是否為山鳶尾。iris數據集有三類花,但這里僅預測是否是山鳶尾。導入iris數據集和工具庫,相應地對原數據集進行轉換。

# Combining Everything Together#----------------------------------# This file will perform binary classification on the# iris dataset. We will only predict if a flower is# I.setosa or not.## We will create a simple binary classifier by creating a line# and running everything through a sigmoid to get a binary predictor.# The two features we will use are pedal length and pedal width.## We will use batch training, but this can be easily# adapted to stochastic training.import matplotlib.pyplot as pltimport numpy as npfrom sklearn import datasetsimport tensorflow as tffrom tensorflow.python.framework import opsops.reset_default_graph()# 導入iris數據集# 根據目標數據是否為山鳶尾將其轉換成1或者0。# 由于iris數據集將山鳶尾標記為0,我們將其從0置為1,同時把其他物種標記為0。# 本次訓練只使用兩種特征:花瓣長度和花瓣寬度,這兩個特征在x-value的第三列和第四列# iris.target = {0, 1, 2}, where '0' is setosa# iris.data ~ [sepal.width, sepal.length, pedal.width, pedal.length]iris = datasets.load_iris()binary_target = np.array([1. if x==0 else 0. for x in iris.target])iris_2d = np.array([[x[2], x[3]] for x in iris.data])# 聲明批量訓練大小batch_size = 20# 初始化計算圖sess = tf.Session()# 聲明數據占位符x1_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)x2_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)# 聲明模型變量# Create variables A and b (0 = x1 - A*x2 + b)A = tf.Variable(tf.random_normal(shape=[1, 1]))b = tf.Variable(tf.random_normal(shape=[1, 1]))# 定義線性模型:# 如果找到的數據點在直線以上,則將數據點代入x2-x1*A-b計算出的結果大于0;# 同理找到的數據點在直線以下,則將數據點代入x2-x1*A-b計算出的結果小于0。# x1 - A*x2 + bmy_mult = tf.matmul(x2_data, A)my_add = tf.add(my_mult, b)my_output = tf.subtract(x1_data, my_add)# 增加TensorFlow的sigmoid交叉熵損失函數(cross entropy)xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output, labels=y_target)# 聲明優化器方法my_opt = tf.train.GradientDescentOptimizer(0.05)train_step = my_opt.minimize(xentropy)# 創建一個變量初始化操作init = tf.global_variables_initializer()sess.run(init)# 運行迭代1000次for i in range(1000):  rand_index = np.random.choice(len(iris_2d), size=batch_size)  # rand_x = np.transpose([iris_2d[rand_index]])  # 傳入三種數據:花瓣長度、花瓣寬度和目標變量  rand_x = iris_2d[rand_index]  rand_x1 = np.array([[x[0]] for x in rand_x])  rand_x2 = np.array([[x[1]] for x in rand_x])  #rand_y = np.transpose([binary_target[rand_index]])  rand_y = np.array([[y] for y in binary_target[rand_index]])  sess.run(train_step, feed_dict={x1_data: rand_x1, x2_data: rand_x2, y_target: rand_y})  if (i+1)%200==0:    print('Step #' + str(i+1) + ' A = ' + str(sess.run(A)) + ', b = ' + str(sess.run(b)))# 繪圖# 獲取斜率/截距# Pull out slope/intercept[[slope]] = sess.run(A)[[intercept]] = sess.run(b)# 創建擬合線x = np.linspace(0, 3, num=50)ablineValues = []for i in x: ablineValues.append(slope*i+intercept)# 繪制擬合曲線setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==1]setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==1]non_setosa_x = [a[1] for i,a in enumerate(iris_2d) if binary_target[i]==0]non_setosa_y = [a[0] for i,a in enumerate(iris_2d) if binary_target[i]==0]plt.plot(setosa_x, setosa_y, 'rx', ms=10, mew=2, label='setosa')plt.plot(non_setosa_x, non_setosa_y, 'ro', label='Non-setosa')plt.plot(x, ablineValues, 'b-')plt.xlim([0.0, 2.7])plt.ylim([0.0, 7.1])plt.suptitle('Linear Separator For I.setosa', fontsize=20)plt.xlabel('Petal Length')plt.ylabel('Petal Width')plt.legend(loc='lower right')plt.show()

輸出:

Step #200 A = [[ 8.70572948]], b = [[-3.46638322]]Step #400 A = [[ 10.21302414]], b = [[-4.720438]]Step #600 A = [[ 11.11844635]], b = [[-5.53361702]]Step #800 A = [[ 11.86427212]], b = [[-6.0110755]]Step #1000 A = [[ 12.49524498]], b = [[-6.29990339]]

TensorFlow,分類器

 以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持VEVB武林網。


注:相關教程知識閱讀請移步到python教程頻道。
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 安宁市| 彝良县| 宜宾市| 江安县| 商南县| 聊城市| 乌拉特中旗| 错那县| 二连浩特市| 怀柔区| 南通市| 济南市| 苏尼特右旗| 德惠市| 怀安县| 忻州市| 青田县| 平乐县| 吉林市| 都昌县| 河津市| 宜春市| 广德县| 韶关市| 太白县| 万载县| 德阳市| 二连浩特市| 古交市| 十堰市| 上思县| 廉江市| 禹州市| 海安县| 库尔勒市| 新龙县| 突泉县| 五指山市| 普兰县| 南澳县| 辽中县|