使用TensorFlow的一個優勢是,它可以維護操作狀態和基于反向傳播自動地更新模型變量。
TensorFlow通過計算圖來更新變量和最小化損失函數來反向傳播誤差的。這步將通過聲明優化函數(optimization function)來實現。一旦聲明好優化函數,TensorFlow將通過它在所有的計算圖中解決反向傳播的項。當我們傳入數據,最小化損失函數,TensorFlow會在計算圖中根據狀態相應的調節變量。
回歸算法的例子從均值為1、標準差為0.1的正態分布中抽樣隨機數,然后乘以變量A,損失函數為L2正則損失函數。理論上,A的最優值是10,因為生成的樣例數據均值是1。
二個例子是一個簡單的二值分類算法。從兩個正態分布(N(-1,1)和N(3,1))生成100個數。所有從正態分布N(-1,1)生成的數據標為目標類0;從正態分布N(3,1)生成的數據標為目標類1,模型算法通過sigmoid函數將這些生成的數據轉換成目標類數據。換句話講,模型算法是sigmoid(x+A),其中,A是要擬合的變量,理論上A=-1。假設,兩個正態分布的均值分別是m1和m2,則達到A的取值時,它們通過-(m1+m2)/2轉換成到0等距的值。后面將會在TensorFlow中見證怎樣取到相應的值。
同時,指定一個合適的學習率對機器學習算法的收斂是有幫助的。優化器類型也需要指定,前面的兩個例子會使用標準梯度下降法,它在TensorFlow中的實現是GradientDescentOptimizer()函數。
# 反向傳播#----------------------------------## 以下Python函數主要是展示回歸和分類模型的反向傳播import matplotlib.pyplot as pltimport numpy as npimport tensorflow as tffrom tensorflow.python.framework import opsops.reset_default_graph()# 創建計算圖會話sess = tf.Session()# 回歸算法的例子:# We will create sample data as follows:# x-data: 100 random samples from a normal ~ N(1, 0.1)# target: 100 values of the value 10.# We will fit the model:# x-data * A = target# Theoretically, A = 10.# 生成數據,創建占位符和變量Ax_vals = np.random.normal(1, 0.1, 100)y_vals = np.repeat(10., 100)x_data = tf.placeholder(shape=[1], dtype=tf.float32)y_target = tf.placeholder(shape=[1], dtype=tf.float32)# Create variable (one model parameter = A)A = tf.Variable(tf.random_normal(shape=[1]))# 增加乘法操作my_output = tf.multiply(x_data, A)# 增加L2正則損失函數loss = tf.square(my_output - y_target)# 在運行優化器之前,需要初始化變量init = tf.global_variables_initializer()sess.run(init)# 聲明變量的優化器my_opt = tf.train.GradientDescentOptimizer(0.02)train_step = my_opt.minimize(loss)# 訓練算法for i in range(100): rand_index = np.random.choice(100) rand_x = [x_vals[rand_index]] rand_y = [y_vals[rand_index]] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%25==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A))) print('Loss = ' + str(sess.run(loss, feed_dict={x_data: rand_x, y_target: rand_y})))# 分類算法例子# We will create sample data as follows:# x-data: sample 50 random values from a normal = N(-1, 1)# + sample 50 random values from a normal = N(1, 1)# target: 50 values of 0 + 50 values of 1.# These are essentially 100 values of the corresponding output index# We will fit the binary classification model:# If sigmoid(x+A) < 0.5 -> 0 else 1# Theoretically, A should be -(mean1 + mean2)/2# 重置計算圖ops.reset_default_graph()# Create graphsess = tf.Session()# 生成數據x_vals = np.concatenate((np.random.normal(-1, 1, 50), np.random.normal(3, 1, 50)))y_vals = np.concatenate((np.repeat(0., 50), np.repeat(1., 50)))x_data = tf.placeholder(shape=[1], dtype=tf.float32)y_target = tf.placeholder(shape=[1], dtype=tf.float32)# 偏差變量A (one model parameter = A)A = tf.Variable(tf.random_normal(mean=10, shape=[1]))# 增加轉換操作# Want to create the operstion sigmoid(x + A)# Note, the sigmoid() part is in the loss functionmy_output = tf.add(x_data, A)# 由于指定的損失函數期望批量數據增加一個批量數的維度# 這里使用expand_dims()函數增加維度my_output_expanded = tf.expand_dims(my_output, 0)y_target_expanded = tf.expand_dims(y_target, 0)# 初始化變量Ainit = tf.global_variables_initializer()sess.run(init)# 聲明損失函數 交叉熵(cross entropy)xentropy = tf.nn.sigmoid_cross_entropy_with_logits(logits=my_output_expanded, labels=y_target_expanded)# 增加一個優化器函數 讓TensorFlow知道如何更新和偏差變量my_opt = tf.train.GradientDescentOptimizer(0.05)train_step = my_opt.minimize(xentropy)# 迭代for i in range(1400): rand_index = np.random.choice(100) rand_x = [x_vals[rand_index]] rand_y = [y_vals[rand_index]] sess.run(train_step, feed_dict={x_data: rand_x, y_target: rand_y}) if (i+1)%200==0: print('Step #' + str(i+1) + ' A = ' + str(sess.run(A))) print('Loss = ' + str(sess.run(xentropy, feed_dict={x_data: rand_x, y_target: rand_y})))# 評估預測predictions = []for i in range(len(x_vals)): x_val = [x_vals[i]] prediction = sess.run(tf.round(tf.sigmoid(my_output)), feed_dict={x_data: x_val}) predictions.append(prediction[0])accuracy = sum(x==y for x,y in zip(predictions, y_vals))/100.print('最終精確度 = ' + str(np.round(accuracy, 2)))輸出:
Step #25 A = [ 6.12853956]Loss = [ 16.45088196]Step #50 A = [ 8.55680943]Loss = [ 2.18415046]Step #75 A = [ 9.50547695]Loss = [ 5.29813051]Step #100 A = [ 9.89214897]Loss = [ 0.34628963]Step #200 A = [ 3.84576249]Loss = [[ 0.00083012]]Step #400 A = [ 0.42345378]Loss = [[ 0.01165466]]Step #600 A = [-0.35141727]Loss = [[ 0.05375391]]Step #800 A = [-0.74206048]Loss = [[ 0.05468176]]Step #1000 A = [-0.89036471]Loss = [[ 0.19636908]]Step #1200 A = [-0.90850282]Loss = [[ 0.00608062]]Step #1400 A = [-1.09374011]Loss = [[ 0.11037558]]最終精確度 = 1.0
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持VEVB武林網。
新聞熱點
疑難解答