国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁(yè) > 編程 > Python > 正文

PyTorch上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò)CNN的方法

2020-01-04 15:19:12
字體:
來(lái)源:轉(zhuǎn)載
供稿:網(wǎng)友

一、卷積神經(jīng)網(wǎng)絡(luò)

卷積神經(jīng)網(wǎng)絡(luò)(ConvolutionalNeuralNetwork,CNN)最初是為解決圖像識(shí)別等問(wèn)題設(shè)計(jì)的,CNN現(xiàn)在的應(yīng)用已經(jīng)不限于圖像和視頻,也可用于時(shí)間序列信號(hào),比如音頻信號(hào)和文本數(shù)據(jù)等。CNN作為一個(gè)深度學(xué)習(xí)架構(gòu)被提出的最初訴求是降低對(duì)圖像數(shù)據(jù)預(yù)處理的要求,避免復(fù)雜的特征工程。在卷積神經(jīng)網(wǎng)絡(luò)中,第一個(gè)卷積層會(huì)直接接受圖像像素級(jí)的輸入,每一層卷積(濾波器)都會(huì)提取數(shù)據(jù)中最有效的特征,這種方法可以提取到圖像中最基礎(chǔ)的特征,而后再進(jìn)行組合和抽象形成更高階的特征,因此CNN在理論上具有對(duì)圖像縮放、平移和旋轉(zhuǎn)的不變性。

卷積神經(jīng)網(wǎng)絡(luò)CNN的要點(diǎn)就是局部連接(LocalConnection)、權(quán)值共享(WeightsSharing)和池化層(Pooling)中的降采樣(Down-Sampling)。其中,局部連接和權(quán)值共享降低了參數(shù)量,使訓(xùn)練復(fù)雜度大大下降并減輕了過(guò)擬合。同時(shí)權(quán)值共享還賦予了卷積網(wǎng)絡(luò)對(duì)平移的容忍性,池化層降采樣則進(jìn)一步降低了輸出參數(shù)量并賦予模型對(duì)輕度形變的容忍性,提高了模型的泛化能力??梢园丫矸e層卷積操作理解為用少量參數(shù)在圖像的多個(gè)位置上提取相似特征的過(guò)程。

二、代碼實(shí)現(xiàn)

import torch import torch.nn as nn from torch.autograd import Variable import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt  torch.manual_seed(1)  EPOCH = 1 BATCH_SIZE = 50 LR = 0.001 DOWNLOAD_MNIST = True  # 獲取訓(xùn)練集dataset training_data = torchvision.datasets.MNIST(        root='./mnist/', # dataset存儲(chǔ)路徑        train=True, # True表示是train訓(xùn)練集,F(xiàn)alse表示test測(cè)試集        transform=torchvision.transforms.ToTensor(), # 將原數(shù)據(jù)規(guī)范化到(0,1)區(qū)間        download=DOWNLOAD_MNIST,        )  # 打印MNIST數(shù)據(jù)集的訓(xùn)練集及測(cè)試集的尺寸 print(training_data.train_data.size()) print(training_data.train_labels.size()) # torch.Size([60000, 28, 28]) # torch.Size([60000])  plt.imshow(training_data.train_data[0].numpy(), cmap='gray') plt.title('%i' % training_data.train_labels[0]) plt.show()  # 通過(guò)torchvision.datasets獲取的dataset格式可直接可置于DataLoader train_loader = Data.DataLoader(dataset=training_data, batch_size=BATCH_SIZE,                 shuffle=True)  # 獲取測(cè)試集dataset test_data = torchvision.datasets.MNIST(root='./mnist/', train=False) # 取前2000個(gè)測(cè)試集樣本 test_x = Variable(torch.unsqueeze(test_data.test_data, dim=1),          volatile=True).type(torch.FloatTensor)[:2000]/255 # (2000, 28, 28) to (2000, 1, 28, 28), in range(0,1) test_y = test_data.test_labels[:2000]  class CNN(nn.Module):   def __init__(self):     super(CNN, self).__init__()     self.conv1 = nn.Sequential( # (1,28,28)            nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5,                 stride=1, padding=2), # (16,28,28)     # 想要con2d卷積出來(lái)的圖片尺寸沒(méi)有變化, padding=(kernel_size-1)/2            nn.ReLU(),            nn.MaxPool2d(kernel_size=2) # (16,14,14)            )     self.conv2 = nn.Sequential( # (16,14,14)            nn.Conv2d(16, 32, 5, 1, 2), # (32,14,14)            nn.ReLU(),            nn.MaxPool2d(2) # (32,7,7)            )     self.out = nn.Linear(32*7*7, 10)    def forward(self, x):     x = self.conv1(x)     x = self.conv2(x)     x = x.view(x.size(0), -1) # 將(batch,32,7,7)展平為(batch,32*7*7)     output = self.out(x)     return output  cnn = CNN() print(cnn) ''''' CNN (  (conv1): Sequential (   (0): Conv2d(1, 16, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))   (1): ReLU ()   (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))  )  (conv2): Sequential (   (0): Conv2d(16, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))   (1): ReLU ()   (2): MaxPool2d (size=(2, 2), stride=(2, 2), dilation=(1, 1))  )  (out): Linear (1568 -> 10) ) ''' optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) loss_function = nn.CrossEntropyLoss()  for epoch in range(EPOCH):   for step, (x, y) in enumerate(train_loader):     b_x = Variable(x)     b_y = Variable(y)      output = cnn(b_x)     loss = loss_function(output, b_y)     optimizer.zero_grad()     loss.backward()     optimizer.step()      if step % 100 == 0:       test_output = cnn(test_x)       pred_y = torch.max(test_output, 1)[1].data.squeeze()       accuracy = sum(pred_y == test_y) / test_y.size(0)       print('Epoch:', epoch, '|Step:', step,          '|train loss:%.4f'%loss.data[0], '|test accuracy:%.4f'%accuracy)  test_output = cnn(test_x[:10]) pred_y = torch.max(test_output, 1)[1].data.numpy().squeeze() print(pred_y, 'prediction number') print(test_y[:10].numpy(), 'real number') ''''' Epoch: 0 |Step: 0 |train loss:2.3145 |test accuracy:0.1040 Epoch: 0 |Step: 100 |train loss:0.5857 |test accuracy:0.8865 Epoch: 0 |Step: 200 |train loss:0.0600 |test accuracy:0.9380 Epoch: 0 |Step: 300 |train loss:0.0996 |test accuracy:0.9345 Epoch: 0 |Step: 400 |train loss:0.0381 |test accuracy:0.9645 Epoch: 0 |Step: 500 |train loss:0.0266 |test accuracy:0.9620 Epoch: 0 |Step: 600 |train loss:0.0973 |test accuracy:0.9685 Epoch: 0 |Step: 700 |train loss:0.0421 |test accuracy:0.9725 Epoch: 0 |Step: 800 |train loss:0.0654 |test accuracy:0.9710 Epoch: 0 |Step: 900 |train loss:0.1333 |test accuracy:0.9740 Epoch: 0 |Step: 1000 |train loss:0.0289 |test accuracy:0.9720 Epoch: 0 |Step: 1100 |train loss:0.0429 |test accuracy:0.9770 [7 2 1 0 4 1 4 9 5 9] prediction number [7 2 1 0 4 1 4 9 5 9] real number ''' 

 三、分析解讀

通過(guò)利用torchvision.datasets可以快速獲取可以直接置于DataLoader中的dataset格式的數(shù)據(jù),通過(guò)train參數(shù)控制是獲取訓(xùn)練數(shù)據(jù)集還是測(cè)試數(shù)據(jù)集,也可以在獲取的時(shí)候便直接轉(zhuǎn)換成訓(xùn)練所需的數(shù)據(jù)格式。

卷積神經(jīng)網(wǎng)絡(luò)的搭建通過(guò)定義一個(gè)CNN類來(lái)實(shí)現(xiàn),卷積層conv1,conv2及out層以類屬性的形式定義,各層之間的銜接信息在forward中定義,定義的時(shí)候要留意各層的神經(jīng)元數(shù)量。

CNN的網(wǎng)絡(luò)結(jié)構(gòu)如下:

CNN ( (conv1): Sequential (  (0): Conv2d(1, 16,kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))  (1): ReLU ()  (2): MaxPool2d (size=(2,2), stride=(2, 2), dilation=(1, 1)) ) (conv2): Sequential (  (0): Conv2d(16, 32,kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))  (1): ReLU ()  (2): MaxPool2d (size=(2,2), stride=(2, 2), dilation=(1, 1)) ) (out): Linear (1568 ->10))

經(jīng)過(guò)實(shí)驗(yàn)可見(jiàn),在EPOCH=1的訓(xùn)練結(jié)果中,測(cè)試集準(zhǔn)確率可達(dá)到97.7%。

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持VEVB武林網(wǎng)。


注:相關(guān)教程知識(shí)閱讀請(qǐng)移步到python教程頻道。
發(fā)表評(píng)論 共有條評(píng)論
用戶名: 密碼:
驗(yàn)證碼: 匿名發(fā)表
主站蜘蛛池模板: 吴忠市| 沧州市| 淄博市| 沂南县| 大姚县| 仪陇县| 岳阳县| 资阳市| 泰州市| 陇西县| 特克斯县| 博湖县| 澎湖县| 中江县| 建平县| 汶上县| 尖扎县| 定西市| 雅江县| 冷水江市| 东乡县| 兰西县| 盐亭县| 彩票| 凭祥市| 双鸭山市| 涪陵区| 巍山| 永安市| 金川县| 民丰县| 微博| 博罗县| 潞城市| 泽州县| 新野县| 绥中县| 老河口市| 克山县| 玉林市| 乌鲁木齐县|