法一:
循環打印
模板
for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())): print '/n', x, y
實例
# coding=utf-8import tensorflow as tfdef func(in_put, layer_name, is_training=True): with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):  bn = tf.contrib.layers.batch_norm(inputs=in_put,           decay=0.9,           is_training=is_training,           updates_collections=None) return bndef main(): with tf.Graph().as_default():  # input_x  input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1])  import numpy as np  i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1])  # outputs  output = func(input_x, 'my', is_training=True)  with tf.Session() as sess:   sess.run(tf.global_variables_initializer())   t = sess.run(output, feed_dict={input_x:i_p})   # 法一: 循環打印   for (x, y) in zip(tf.global_variables(), sess.run(tf.global_variables())):    print '/n', x, yif __name__ == "__main__": main()2017-09-29 10:10:22.714213: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)<tf.Variable 'my/BatchNorm/beta:0' shape=(1,) dtype=float32_ref> [ 0.]<tf.Variable 'my/BatchNorm/moving_mean:0' shape=(1,) dtype=float32_ref> [ 13.46412563]<tf.Variable 'my/BatchNorm/moving_variance:0' shape=(1,) dtype=float32_ref> [ 452.62246704]Process finished with exit code 0
法二:
指定變量名打印
模板
print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0'))實例
# coding=utf-8import tensorflow as tfdef func(in_put, layer_name, is_training=True): with tf.variable_scope(layer_name, reuse=tf.AUTO_REUSE):  bn = tf.contrib.layers.batch_norm(inputs=in_put,           decay=0.9,           is_training=is_training,           updates_collections=None) return bndef main(): with tf.Graph().as_default():  # input_x  input_x = tf.placeholder(dtype=tf.float32, shape=[1, 4, 4, 1])  import numpy as np  i_p = np.random.uniform(low=0, high=255, size=[1, 4, 4, 1])  # outputs  output = func(input_x, 'my', is_training=True)  with tf.Session() as sess:   sess.run(tf.global_variables_initializer())   t = sess.run(output, feed_dict={input_x:i_p})   # 法二: 指定變量名打印   print 'my/BatchNorm/beta:0', (sess.run('my/BatchNorm/beta:0'))   print 'my/BatchNorm/moving_mean:0', (sess.run('my/BatchNorm/moving_mean:0'))   print 'my/BatchNorm/moving_variance:0', (sess.run('my/BatchNorm/moving_variance:0'))if __name__ == "__main__": main()2017-09-29 10:12:41.374055: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1052] Creating TensorFlow device (/device:GPU:0) -> (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)my/BatchNorm/beta:0 [ 0.]my/BatchNorm/moving_mean:0 [ 8.08649635]my/BatchNorm/moving_variance:0 [ 368.03442383]Process finished with exit code 0
以上這篇tensorflow 打印內存中的變量方法就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持VEVB武林網。
 
  | 
新聞熱點
疑難解答