国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

kaggle+mnist實現手寫字體識別

2020-01-04 14:46:40
字體:
來源:轉載
供稿:網友

現在的許多手寫字體識別代碼都是基于已有的mnist手寫字體數據集進行的,而kaggle需要用到網站上給出的數據集并生成測試集的輸出用于提交。這里選擇keras搭建卷積網絡進行識別,可以直接生成測試集的結果,最終結果識別率大概97%左右的樣子。

# -*- coding: utf-8 -*-"""Created on Tue Jun 6 19:07:10 2017@author: Administrator"""from keras.models import Sequentialfrom keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utilsimport osimport pandas as pdimport numpy as npfrom tensorflow.examples.tutorials.mnist import input_datafrom keras import backend as Kimport tensorflow as tf# 全局變量 batch_size = 100 nb_classes = 10 epochs = 20# input image dimensions img_rows, img_cols = 28, 28 # number of convolutional filters to use nb_filters = 32 # size of pooling area for max pooling pool_size = (2, 2) # convolution kernel size kernel_size = (3, 3) inputfile='F:/data/kaggle/mnist/train.csv'inputfile2= 'F:/data/kaggle/mnist/test.csv'outputfile= 'F:/data/kaggle/mnist/test_label.csv'pwd = os.getcwd()os.chdir(os.path.dirname(inputfile)) train= pd.read_csv(os.path.basename(inputfile)) #從訓練數據文件讀取數據os.chdir(pwd)pwd = os.getcwd()os.chdir(os.path.dirname(inputfile)) test= pd.read_csv(os.path.basename(inputfile2)) #從測試數據文件讀取數據os.chdir(pwd)x_train=train.iloc[:,1:785] #得到特征數據y_train=train['label']y_train = np_utils.to_categorical(y_train, 10)mnist=input_data.read_data_sets("MNIST_data/",one_hot=True) #導入數據x_test=mnist.test.imagesy_test=mnist.test.labels# 根據不同的backend定下不同的格式 if K.image_dim_ordering() == 'th':  x_train=np.array(x_train) test=np.array(test) x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)  x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)  input_shape = (1, img_rows, img_cols)  test = test.reshape(test.shape[0], 1, img_rows, img_cols) else:  x_train=np.array(x_train) test=np.array(test) x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)  X_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)  test = test.reshape(test.shape[0], img_rows, img_cols, 1)  input_shape = (img_rows, img_cols, 1) x_train = x_train.astype('float32') x_test = X_test.astype('float32') test = test.astype('float32') x_train /= 255 X_test /= 255test/=255 print('X_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') print(test.shape[0], 'testOuput samples') model=Sequential()#model initialmodel.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]),       padding='same',       input_shape=input_shape)) # 卷積層1 model.add(Activation('relu')) #激活層 model.add(Convolution2D(nb_filters, (kernel_size[0], kernel_size[1]))) #卷積層2 model.add(Activation('relu')) #激活層 model.add(MaxPooling2D(pool_size=pool_size)) #池化層 model.add(Dropout(0.25)) #神經元隨機失活 model.add(Flatten()) #拉成一維數據 model.add(Dense(128)) #全連接層1 model.add(Activation('relu')) #激活層 model.add(Dropout(0.5)) #隨機失活 model.add(Dense(nb_classes)) #全連接層2 model.add(Activation('softmax')) #Softmax評分 #編譯模型 model.compile(loss='categorical_crossentropy',     optimizer='adadelta',     metrics=['accuracy']) #訓練模型 model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,verbose=1) model.predict(x_test)#評估模型 score = model.evaluate(x_test, y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1]) y_test=model.predict(test)sess=tf.InteractiveSession()y_test=sess.run(tf.arg_max(y_test,1))y_test=pd.DataFrame(y_test)y_test.to_csv(outputfile)

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持VEVB武林網。


注:相關教程知識閱讀請移步到python教程頻道。
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 织金县| 江北区| 普格县| 张家口市| 九江市| 庆元县| 科技| 石狮市| 靖边县| 兰溪市| 新民市| 上饶县| 淳化县| 喀喇| 和顺县| 长兴县| 合山市| 乡宁县| 平罗县| 朝阳市| 周口市| 萨嘎县| 扶余县| 鹿邑县| 遂平县| 阳新县| 池州市| 临清市| 敦化市| 阳谷县| 开原市| 禄劝| 嘉鱼县| 长垣县| 开封县| 西盟| 罗甸县| 沙田区| 东乌珠穆沁旗| 巴林右旗| 天门市|