Series的map方法可以接受一個(gè)函數(shù)或含有映射關(guān)系的字典型對(duì)象。
使用map是一種實(shí)現(xiàn)元素級(jí)轉(zhuǎn)換以及其他數(shù)據(jù)清理工作的便捷方式。
(DataFrame中對(duì)應(yīng)的是applymap()函數(shù),當(dāng)然DataFrame還有apply()函數(shù))
1、字典映射
import pandas as pdfrom pandas import Series, DataFramedata = DataFrame({'food':['bacon','pulled pork','bacon','Pastrami',   'corned beef','Bacon','pastrami','honey ham','nova lox'],     'ounces':[4,3,12,6,7.5,8,3,5,6]})meat_to_animal = { 'bacon':'pig', 'pulled pork':'pig', 'pastrami':'cow', 'corned beef':'cow', 'honey ham':'pig', 'nova lox':'salmon' } data['animal'] = data['food'].map(str.lower).map(meat_to_animal) data data['food'].map(lambda x: meat_to_animal[x.lower()])  2、應(yīng)用函數(shù)
In [579]: import pandas as pdIn [580]: from pandas import Series, DataFrameIn [581]: index = pd.date_range('2017-08-15', periods=10)In [582]: ser = Series(list(range(10)), index=index)In [583]: serOut[583]: 2017-08-15 02017-08-16 12017-08-17 22017-08-18 32017-08-19 42017-08-20 52017-08-21 62017-08-22 72017-08-23 82017-08-24 9Freq: D, dtype: int64In [585]: ser.index.map(lambda x: x.day)Out[585]: Int64Index([15, 16, 17, 18, 19, 20, 21, 22, 23, 24], dtype='int64')In [586]: ser.index.map(lambda x: x.weekday)Out[586]: Int64Index([1, 2, 3, 4, 5, 6, 0, 1, 2, 3], dtype='int64')In [587]: ser.map(lambda x: x+10)Out[587]: 2017-08-15 102017-08-16 112017-08-17 122017-08-18 132017-08-19 142017-08-20 152017-08-21 162017-08-22 172017-08-23 182017-08-24 19Freq: D, dtype: int64In [588]: def f(x):  ...:  if x < 5:  ...:   return True  ...:  else:  ...:   return False  ...:  In [589]: ser.map(f)Out[589]: 2017-08-15  True2017-08-16  True2017-08-17  True2017-08-18  True2017-08-19  True2017-08-20 False2017-08-21 False2017-08-22 False2017-08-23 False2017-08-24 FalseFreq: D, dtype: bool以上這篇對(duì)pandas中Series的map函數(shù)詳解就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持VEVB武林網(wǎng)。
新聞熱點(diǎn)
疑難解答
圖片精選