国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

python生成器與迭代器詳解

2020-01-04 13:38:51
字體:
來源:轉載
供稿:網友

列表生成式:

例一:

a = [i+1 for i in range(10)]
print(a)

輸出:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

例二:

L = [1, 2, 3, 4, 5]
print([i*i for i in L if i>3])

輸出:

[16, 25]

例三:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
print([i*a for i in L for a in I if i > 2 if a < 8])

輸出:

[18, 21, 24, 28, 30, 35]

生成器:

通過列表生成式,我們可以直接創建一個列表。但是,受到內存限制,列表容量肯定是有限的。而且,創建一個包含100萬個元素的列表,不僅占用很大的存儲空間,如果我們僅僅需要訪問前面幾個元素,那后面絕大多數元素占用的空間都白白浪費了。

所以,如果列表元素可以按照某種算法推算出來,這樣就不必創建完整的list,從而節省大量的空間。在Python中,這種一邊循環一邊計算的機制,稱為生成器:generator。

要創建一個generator,有很多種方法。第一種方法很簡單,只要把一個列表生成式的[]改成(),就創建了一個generator:

示例:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I )
print(g)

輸出:

<generator object <genexpr> at 0x00000276586C1F48>

創建L和g的區別僅在于最外層的[]和(),L是一個list,而g是一個generator。

我們可以直接打印出list的每一個元素,可以通過generator的next()方法

next(g)

例一:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I )
print(next(g))
print(next(g))
print(next(g))

輸出:

6
7
8

例二:

L = [1, 2, 3, 4, 5]
I = [6, 7, 8, 9, 10]
g = (i*a for i in L for a in I if i > 2 if a < 8)
print(next(g))
print(next(g))
print(next(g))

輸出:

18
21
24

因為generator保存的是算法,每次調用next(g)就計算出g的下一個元素的值,直到計算到最后一個元素,沒有更多的元素時,拋出StopIteration的錯誤。正確的方法是使用for循環,因為generator也是可迭代對象:

例三:

g = (i*i for i in range(0, 5))
for i in g:
    print(i)

當我們創建了一個generator后,基本上永遠不會調用next()方法,而是通過for循環來迭代它。

generator非常強大。如果推算的算法比較復雜,用類似列表生成式的for循環無法實現的時候,還可以用函數來實現。

比如,著名的斐波拉契數列(Fibonacci),除第一個和第二個數外,任意一個數都可由前兩個數相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契數列用列表生成式寫不出來,但是,用函數把它打印出來卻很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print b
        a, b = b, a + b
        n = n + 1

上面的函數可以輸出斐波那契數列的前N個數:

>>> fib(6)
1
1
2
3
5
8

仔細觀察,可以看出,fib函數實際上是定義了斐波拉契數列的推算規則,可以從第一個元素開始,推算出后續任意的元素,這種邏輯其實非常類似generator。
也就是說,上面的函數和generator僅一步之遙。要把fib函數變成generator,只需要把print(b)改為yield b就可以了:

def fib(max):  n,a,b = 0,0,1  while n < max:    #print(b)    yield b    a,b = b,a+b    n += 1  return 'done'

這就是定義generator的另一種方法。如果一個函數定義中包含yield關鍵字,那么這個函數就不再是一個普通函數,而是一個generator:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        yield b
        a, b = b, a + b
        n = n + 1
    return 'done'
print(fib(5))

輸出:

<generator object fib at 0x0000023DC66C1F48>

調用方法:   ##但是用for循環調用generator時,/
            ##發現拿不到generator的return語句/
            ##的返回值。如果想要拿到返回值,必須捕獲StopIteration錯誤,返回值包含在StopIteration的value中:

for i in fib(5):
    print(i)

輸出:

1
1
2
3
5

或者:

date = fib(5)
print(date.__next__())
print(date.__next__())
print(date.__next__())
print('test')
print(date.__next__())
print(date.__next__())

輸出:

1
1
2
test
3
5

send方法有一個參數,該參數指定的是上一次被掛起的yield語句的返回值

還可通過yield實現在單線程的情況下實現并發運算的效果  

#_*_coding:utf-8_*___author__ = 'Alex Li'import timedef consumer(name):  print("%s 準備吃包子啦!" %name)  while True:    baozi = yield    print("包子[%s]來了,被[%s]吃了!" %(baozi,name))def producer(name):  c = consumer('A')  c2 = consumer('B')  c.__next__()  c2.__next__()  print("老子開始準備做包子啦!")  for i in range(10):    time.sleep(1)    print("做了2個包子!")    c.send(i)    c2.send(i)producer("alex")

通過生成器實現協程并行運算

迭代器:

可以直接作用于for循環的數據類型有以下幾種:

一類是集合數據類型,如list、tuple、dict、set、str等;

一類是generator,包括生成器和帶yield的generator function。

這些可以直接作用于for循環的對象統稱為可迭代對象:Iterable。

可以使用isinstance()判斷一個對象是否是Iterable對象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循環,還可以被next()函數不斷調用并返回下一個值,直到最后拋出StopIteration錯誤表示無法繼續返回下一個值了。

*可以被next()函數調用并不斷返回下一個值的對象稱為迭代器:Iterator。

可以使用isinstance()判斷一個對象是否是Iterator對象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

生成器都是Iterator對象,但list、dict、str雖然是Iterable,卻不是Iterator。

把list、dict、str等Iterable變成Iterator可以使用iter()函數:

>>> isinstance(iter([]), Iterator)
True
>>> isinstance(iter('abc'), Iterator)
True

為什么list、dict、str等數據類型不是Iterator?

這是因為Python的Iterator對象表示的是一個數據流,Iterator對象可以被next()函數調用并不斷返回下一個數據,直到沒有數據時拋出StopIteration錯誤。可以把這個數據流看做是一個有序序列,但我們卻不能提前知道序列的長度,只能不斷通過next()函數實現按需計算下一個數據,所以Iterator的計算是惰性的,只有在需要返回下一個數據時它才會計算。

Iterator甚至可以表示一個無限大的數據流,例如全體自然數。而使用list是永遠不可能存儲全體自然數的。

小結:

凡是可作用于for循環的對象都是Iterable類型;

凡是可作用于next()函數的對象都是Iterator類型,它們表示一個惰性計算的序列;

集合數據類型如list、dict、str等是Iterable但不是Iterator,不過可以通過iter()函數獲得一個Iterator對象。

Python3的for循環本質上就是通過不斷調用next()函數實現的,例如:

for x in [1, 2, 3, 4, 5]:
    pass

實際上完全等價于:

# 首先獲得Iterator對象:
it = iter([1, 2, 3, 4, 5])
# 循環:
while True:
    try:
        # 獲得下一個值:
        x = next(it)
    except StopIteration:
        # 遇到StopIteration就退出循環
        break


注:相關教程知識閱讀請移步到python教程頻道。
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 中阳县| 通化市| 赤城县| 平山县| 融水| 砚山县| 馆陶县| 栖霞市| 济南市| 清远市| 延川县| 沙田区| 蓝田县| 林周县| 登封市| 涞水县| 托克逊县| 旬阳县| 新闻| 通城县| 河曲县| 鄂州市| 嘉峪关市| 炎陵县| 土默特右旗| 福州市| 长葛市| 青河县| 城固县| 镇原县| 石泉县| 桐城市| 南宫市| 巩义市| 中西区| 石门县| 蒙自县| 浦北县| 兴城市| 东宁县| 镶黄旗|