国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 系統 > Android > 正文

Android7.0 MessageQueue詳解

2019-12-12 05:11:53
字體:
來源:轉載
供稿:網友

Android中的消息處理機制大量依賴于Handler。每個Handler都有對應的Looper,用于不斷地從對應的MessageQueue中取出消息處理。

一直以來,覺得MessageQueue應該是Java層的抽象,然而事實上MessageQueue的主要部分在Native層中。
自己對MessageQueue在Native層的工作不太熟悉,借此機會分析一下。

一、MessageQueue的創建

當需要使用Looper時,我們會調用Looper的prepare函數:

public static void prepare() { prepare(true);}private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) { throw new RuntimeException("Only one Looper may be created per thread"); } //sThreadLocal為線程本地存儲區;每個線程僅有一個Looper sThreadLocal.set(new Looper(quitAllowed));}private Looper(boolean quitAllowed) { //創建出MessageQueue mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread();}

1 NativeMessageQueue

我們看看MessageQueue的構造函數:

MessageQueue(boolean quitAllowed) { mQuitAllowed = quitAllowed; //mPtr的類型為long? mPtr = nativeInit();}

MessageQueue的構造函數中就調用了native函數,我們看看android_os_MessageQueue.cpp中的實現:

static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) { //MessageQueue的Native層實體 NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue(); ............ //這里應該類似與將指針轉化成long類型,放在Java層保存;估計Java層使用時,會在native層將long變成指針,就可以操作隊列了 return reinterpret_cast<jlong>(nativeMessageQueue);}

我們跟進NativeMessageQueue的構造函數:

NativeMessageQueue::NativeMessageQueue() : mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) { //創建一個Native層的Looper,也是線程唯一的 mLooper = Looper::getForThread(); if (mLooper == NULL) { mLooper = new Looper(false); Looper::setForThread(mLooper); }}

從代碼來看,Native層和Java層均有Looper對象,應該都是操作MessageQueue的。MessageQueue在Java層和Native層有各自的存儲結構,分別存儲Java層和Native層的消息。

2 Native層的looper

我們看看Native層looper的構造函數:

Looper::Looper(bool allowNonCallbacks) : mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false), mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false), mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) { //此處創建了個fd mWakeEventFd = eventfd(0, EFD_NONBLOCK | EFD_CLOEXEC); ....... rebuildEpollLocked();}

在native層中,MessageQueue中的Looper初始化時,還調用了rebuildEpollLocked函數,我們跟進一下:

void Looper::rebuildEpollLocked() { // Close old epoll instance if we have one. if (mEpollFd >= 0) { close(mEpollFd); } // Allocate the new epoll instance and register the wake pipe. mEpollFd = epoll_create(EPOLL_SIZE_HINT); ............ struct epoll_event eventItem; memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union eventItem.events = EPOLLIN; eventItem.data.fd = mWakeEventFd; //在mEpollFd上監聽mWakeEventFd上是否有數據到來 int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem); ........... for (size_t i = 0; i < mRequests.size(); i++) { const Request& request = mRequests.valueAt(i); struct epoll_event eventItem; request.initEventItem(&eventItem); //監聽request對應fd上數據的到來 int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem); ............ }}

從native層的looper來看,我們知道Native層依賴于epoll來驅動事件處理。此處我們先保留一下大致的映像,后文詳細分析。

二、使用MessageQueue

1 寫入消息
 Android中既可以在Java層向MessageQueue寫入消息,也可以在Native層向MessageQueue寫入消息。我們分別看一下對應的操作流程。

1.1 Java層寫入消息
Java層向MessageQueue寫入消息,依賴于enqueueMessage函數:

boolean enqueueMessage(Message msg, long when) { if (msg.target == null) { throw new IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) { throw new IllegalStateException(msg + " This message is already in use."); } synchronized (this) { if (mQuitting) {  .....  return false; } msg.markInUse(); msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) {  // New head, wake up the event queue if blocked.  msg.next = p;  mMessages = msg;  //在頭部插入數據,如果之前MessageQueue是阻塞的,那么現在需要喚醒  needWake = mBlocked; } else {  // Inserted within the middle of the queue. Usually we don't have to wake  // up the event queue unless there is a barrier at the head of the queue  // and the message is the earliest asynchronous message in the queue.  needWake = mBlocked && p.target == null && msg.isAsynchronous();  Message prev;  for (;;) {  prev = p;  p = p.next;  if (p == null || when < p.when) {   break;  }  //不是第一個異步消息時,needWake置為false  if (needWake && p.isAsynchronous()) {   needWake = false;  }  }  msg.next = p; // invariant: p == prev.next  prev.next = msg; } // We can assume mPtr != 0 because mQuitting is false. if (needWake) {  nativeWake(mPtr); } } return true;}

上述代碼比較簡單,主要就是將新加入的Message按執行時間插入到原有的隊列中,然后根據情況調用nativeAwake函數。

我們跟進一下nativeAwake:

void NativeMessageQueue::wake() { mLooper->wake();}void Looper::wake() { uint64_t inc = 1; //就是向mWakeEventFd寫入數據 ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t))); .............}

在native層的looper初始化時,我們提到過native層的looper將利用epoll來驅動事件,其中構造出的epoll句柄就監聽了mWakeEventFd。
實際上從MessageQueue中取出數據時,若沒有數據到來,就會利用epoll進行等待;因此當Java層寫入消息時,將會將喚醒處于等待狀態的MessageQueue。
在后文介紹從MessageQueue中提取消息時,將再次分析這個問題。

1.2 Native層寫入消息
Native層寫入消息,依賴于Native層looper的sendMessage函數:

void Looper::sendMessage(const sp<MessageHandler>& handler, const Message& message) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); sendMessageAtTime(now, handler, message);}void Looper::sendMessageAtTime(nsecs_t uptime, const sp<MessageHandler>& handler, const Message& message) { size_t i = 0; { AutoMutex _l(mLock); //同樣需要按時間插入 size_t messageCount = mMessageEnvelopes.size(); while (i < messageCount && uptime >= mMessageEnvelopes.itemAt(i).uptime) {  i += 1; } //將message包裝成一個MessageEnvelope對象 MessageEnvelope messageEnvelope(uptime, handler, message); mMessageEnvelopes.insertAt(messageEnvelope, i, 1); // Optimization: If the Looper is currently sending a message, then we can skip // the call to wake() because the next thing the Looper will do after processing // messages is to decide when the next wakeup time should be. In fact, it does // not even matter whether this code is running on the Looper thread. if (mSendingMessage) {  return; } } // Wake the poll loop only when we enqueue a new message at the head. if (i == 0) { //若插入在隊列頭部,同樣利用wake函數觸發epoll喚醒 wake(); }}

以上就是向MessageQueue中加入消息的主要流程,接下來我們看看從MessageQueue中取出消息的流程。

2、提取消息
當Java層的Looper對象調用loop函數時,就開始使用MessageQueue提取消息了:

public static void loop() { final Looper me = myLooper(); ....... for (;;) { Message msg = queue.next(); // might block ....... try {  //調用Message的處理函數進行處理  msg.target.dispatchMessage(msg); }........ }}

此處我們看看MessageQueue的next函數:

Message next() { //mPtr保存了NativeMessageQueue的指針 final long ptr = mPtr; ....... int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) {  //會調用Native函數,最終調用IPCThread的talkWithDriver,將數據寫入Binder驅動或者讀取一次數據  //不知道在此處進行這個操作的理由?  Binder.flushPendingCommands(); } //處理native層的數據,此處會利用epoll進行blocked nativePollOnce(ptr, nextPollTimeoutMillis); synchronized (this) {  final long now = SystemClock.uptimeMillis();  Message prevMsg = null;  Message msg = mMessages;  //下面其實就是找出下一個異步處理類型的消息;異步處理類型的消息,才含有對應的執行函數  if (msg != null && msg.target == null) {  // Stalled by a barrier. Find the next asynchronous message in the queue.  do {   prevMsg = msg;   msg = msg.next;  } while (msg != null && !msg.isAsynchronous());  }  if (msg != null) {  if (now < msg.when) {   // Next message is not ready. Set a timeout to wake up when it is ready.   nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);  } else {   // Got a message.   mBlocked = false;   //完成next記錄的存儲   if (prevMsg != null) {   prevMsg.next = msg.next;   } else {   mMessages = msg.next;   }   msg.next = null;   if (DEBUG) Log.v(TAG, "Returning message: " + msg);   msg.markInUse();   return msg;  }  } else {  // No more messages.  nextPollTimeoutMillis = -1;  }  // Process the quit message now that all pending messages have been handled.  if (mQuitting) {  dispose();  return null;  }  //MessageQueue中引入了IdleHandler接口,即當MessageQueue沒有數據處理時,調用IdleHandler進行一些工作  //pendingIdleHandlerCount表示待處理的IdleHandler,初始為-1  if (pendingIdleHandlerCount < 0   && (mMessages == null || now < mMessages.when)) {  //mIdleHandlers的size默認為0,調用接口addIdleHandler才能增加  pendingIdleHandlerCount = mIdleHandlers.size();  }  if (pendingIdleHandlerCount <= 0) {  // No idle handlers to run. Loop and wait some more.  mBlocked = true;  continue;  }  //將待處理的IdleHandler加入到PendingIdleHandlers中  if (mPendingIdleHandlers == null) {  mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];  }  //調用ArrayList.toArray(T[])節省每次分配的開銷;畢竟對于Message.Next這樣調用頻率較高的函數,能省一點就是一點  mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); } for (int i = 0; i < pendingIdleHandlerCount; i++) {  final IdleHandler idler = mPendingIdleHandlers[i];  mPendingIdleHandlers[i] = null; // release the reference to the handler  boolean keep = false;  try {  //執行實現類的queueIdle函數,返回值決定是否繼續保留  keep = idler.queueIdle();  } catch (Throwable t) {  Log.wtf(TAG, "IdleHandler threw exception", t);  }  if (!keep) {  synchronized (this) {   mIdleHandlers.remove(idler);  }  } } pendingIdleHandlerCount = 0; nextPollTimeoutMillis = 0; }}

整個提取消息的過程,大致上如上圖所示。
可以看到在Java層,Looper除了要取出MessageQueue的消息外,還會在隊列空閑期執行IdleHandler定義的函數。

2.1 nativePollOnce
現在唯一的疑點是nativePollOnce是如何處理Native層數據的,我們看看對應的native函數:

static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj, jlong ptr, jint timeoutMillis) { //果然Java層調用native層MessageQueue時,將long類型的ptr變為指針 NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr); nativeMessageQueue->pollOnce(env, obj, timeoutMillis);}void NativeMessageQueue::pollOnce(JNIEnv* env, jobject pollObj, int timeoutMillis) { mPollEnv = env; mPollObj = pollObj; //最后還是進入到Native層looper的pollOnce函數 mLooper->pollOnce(timeoutMillis); mPollObj = NULL; mPollEnv = NULL; if (mExceptionObj) { ......... }}

看看native層looper的pollOnce函數:

//timeoutMillis為超時等待時間。值為-1時,表示無限等待直到有事件到來;值為0時,表示無需等待//outFd此時為null,含義是:存儲產生事件的文件句柄//outEvents此時為null,含義是:存儲outFd上發生了哪些事件,包括可讀、可寫、錯誤和中斷//outData此時為null,含義是:存儲上下文數據,其實調用時傳入的參數int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) { int result = 0; for (;;) { //處理response,目前我們先不關注response的內含 while (mResponseIndex < mResponses.size()) {  const Response& response = mResponses.itemAt(mResponseIndex++);  int ident = response.request.ident;  if (ident >= 0) {  int fd = response.request.fd;  int events = response.events;  void* data = response.request.data;  if (outFd != NULL) *outFd = fd;  if (outEvents != NULL) *outEvents = events;  if (outData != NULL) *outData = data;  return ident;  } } //根據pollInner的結果,進行操作 if (result != 0) {  if (outFd != NULL) *outFd = 0;  if (outEvents != NULL) *outEvents = 0;  if (outData != NULL) *outData = NULL;  return result; } //主力還是靠pollInner result = pollInner(timeoutMillis); }}

跟進一下pollInner函數:

int Looper::pollInner(int timeoutMillis) { // Adjust the timeout based on when the next message is due. //timeoutMillis是Java層事件等待事件 //native層維持了native message的等待時間 //此處其實就是選擇最小的等待時間 if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {  nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);  int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);  if (messageTimeoutMillis >= 0  && (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {  timeoutMillis = messageTimeoutMillis; } } int result = POLL_WAKE; //pollInner初始就清空response mResponses.clear(); mResponseIndex = 0; // We are about to idle. mPolling = true; //利用epoll等待mEpollFd監控的句柄上事件到達 struct epoll_event eventItems[EPOLL_MAX_EVENTS]; int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis); // No longer idling. mPolling = false; // Acquire lock. mLock.lock(); //重新調用rebuildEpollLocked時,將使得epoll句柄能夠監聽新加入request對應的fd if (mEpollRebuildRequired) { mEpollRebuildRequired = false; rebuildEpollLocked(); goto Done; } // Check for poll error. if (eventCount < 0) { if (errno == EINTR) {  goto Done; } ...... result = POLL_ERROR; goto Done; } // Check for poll timeout. if (eventCount == 0) { result = POLL_TIMEOUT; goto Done; } for (int i = 0; i < eventCount; i++) { if (fd == mWakeEventFd) {  if (epollEvents & EPOLLIN) {  //前面已經分析過,當java層或native層有數據寫入隊列時,將寫mWakeEventFd,以觸發epoll喚醒  //awoken將讀取并清空mWakeEventFd上的數據  awoken();  } else {  .........  } } else {  //epoll同樣監聽的request對應的fd  ssize_t requestIndex = mRequests.indexOfKey(fd);  if (requestIndex >= 0) {  int events = 0;  if (epollEvents & EPOLLIN) events |= EVENT_INPUT;  if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;  if (epollEvents & EPOLLERR) events |= EVENT_ERROR;  if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;  //存儲這個fd對應的response  pushResponse(events, mRequests.valueAt(requestIndex));  } else {  ..........  } } }

Done:

 // Invoke pending message callbacks. mNextMessageUptime = LLONG_MAX; //處理Native層的Message while (mMessageEnvelopes.size() != 0) { nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC); const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0); if (messageEnvelope.uptime <= now) {  // Remove the envelope from the list.  // We keep a strong reference to the handler until the call to handleMessage  // finishes. Then we drop it so that the handler can be deleted *before*  // we reacquire our lock.  {  sp<MessageHandler> handler = messageEnvelope.handler;  Message message = messageEnvelope.message;  mMessageEnvelopes.removeAt(0);  mSendingMessage = true;  mLock.unlock();  //處理Native Message  handler->handleMessage(message);  }  mLock.lock();  mSendingMessage = false;  result = POLL_CALLBACK; } else {  // The last message left at the head of the queue determines the next wakeup time.  mNextMessageUptime = messageEnvelope.uptime;  break; } } // Release lock. mLock.unlock(); //處理帶回調函數的response for (size_t i = 0; i < mResponses.size(); i++) { Response& response = mResponses.editItemAt(i); if (response.request.ident == POLL_CALLBACK) {  int fd = response.request.fd;  int events = response.events;  void* data = response.request.data;  //調用response的callback  int callbackResult = response.request.callback->handleEvent(fd, events, data);  if (callbackResult == 0) {  removeFd(fd, response.request.seq);  }  response.request.callback.clear();  result = POLL_CALLBACK; } } return result;}

說實話native層的代碼寫的很亂,該函數的功能比較多。
如上圖所示,在nativePollOnce中利用epoll監聽是否有數據到來,然后處理native message、native response。

最后,我們看看如何在native層中加入request。

3 添加監控請求
native層增加request依賴于looper的接口addFd:

//fd表示需要監聽的句柄//ident的含義還沒有搞明白//events表示需要監聽的事件,例如EVENT_INPUT、EVENT_OUTPUT、EVENT_ERROR和EVENT_HANGUP中的一個或多個//callback為事件發生后的回調函數//data為回調函數對應的參數int Looper::addFd(int fd, int ident, int events, Looper_callbackFunc callback, void* data) { return addFd(fd, ident, events, callback ? new SimpleLooperCallback(callback) : NULL, data);}

結合上文native層輪詢隊列的操作,我們大致可以知道:addFd的目的,就是讓native層的looper監控新加入的fd上是否有指定事件發生。
如果發生了指定的事件,就利用回調函數及參數構造對應的response。
native層的looper處理response時,就可以執行對應的回調函數了。

看看實際的代碼:

int Looper::addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data) { ........ { AutoMutex _l(mLock); //利用參數構造一個request Request request; request.fd = fd; request.ident = ident; request.events = events; request.seq = mNextRequestSeq++; request.callback = callback; request.data = data; if (mNextRequestSeq == -1) mNextRequestSeq = 0; // reserve sequence number -1 struct epoll_event eventItem; request.initEventItem(&eventItem); //判斷之前是否已經利用該fd構造過Request ssize_t requestIndex = mRequests.indexOfKey(fd); if (requestIndex < 0) {  //mEpollFd新增一個需監聽fd  int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem);  .......  mRequests.add(fd, request); } else {  //mEpollFd修改舊的fd對應的監聽事件  int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_MOD, fd, & eventItem);  if (epollResult < 0) {  if (errno == ENOENT) {   // Tolerate ENOENT because it means that an older file descriptor was   // closed before its callback was unregistered and meanwhile a new   // file descriptor with the same number has been created and is now   // being registered for the first time.    epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem);   .......  }  //發生錯誤重新加入時,安排EpollRebuildLocked,將讓epollFd重新添加一次待監聽的fd  scheduleEpollRebuildLocked();  }  mRequests.replaceValueAt(requestIndex, request); } }}

對加入監控請求的處理,在上文介紹pollInner函數時已做分析,此處不再贅述。

三、總結

1、流程總結


MessageQueue的整個流程包括了Java部分和Native部分,從圖中可以看出Native層的比重還是很大的。我們結合上圖回憶一下整個MessageQueue對應的處理流程:
1、Java層創建Looper對象時,將會創建Java層的MessageQueue;Java層的MessageQueue初始化時,將利用Native函數創建出Native層的MessageQueue。

2、Native層的MessageQueue初始化后,將創建對應的Native Looper對象。Native對象初始化時,將創建對應epollFd和WakeEventFd。其中,epollFd將作為epoll的監聽句柄,初始時epollFd僅監聽WakeEventFd。

3、圖中紅色線條為Looper從MessageQueue中取消息時,處理邏輯的流向。
3.1、當Java層的Looper開始循環時,首先需要通過JNI函數調用Native Looper進行pollOnce的操作。

3.2、Native Looper開始運行后,需要等待epollFd被喚醒。當epollFd等待超時或監聽的句柄有事件到來,Native Looper就可以開始處理事件了。

3.3、在Native層,Native Looper將先處理Native MessageQueue中的消息,再調用Response對應的回調函數。

3.4、本次循環中,Native層事件處理完畢后,才開始處理Java層中MessageQueue的消息。若MessageQueue中沒有消息需要處理,并且MessageQueue中存在IdleHandler時,將調用IdleHandler定義的處理函數。

圖中藍色部分為對應的函數調用:
在Java層:
利用MessageQueue的addIdleHandler,可以為MessageQueue增加IdleHandler;
利用MessageQueue的enqueueMessage,可以向MessageQueue增加消息;必要時將利用Native函數向Native層的WakeEventFd寫入消息,以喚醒epollFd。

在Native層:
利用looper:sendMessage,可以為Native MessageQueue增加消息;同樣,要時將向Native層的WakeEventFd寫入消息,以喚醒epollFd;
利用looper:addFd,可以向Native Looper注冊監聽請求,監聽請求包含需監聽的fd、監聽的事件及對應的回調函數等,監聽請求對應的fd將被成為epollFd監聽的對象。當被監聽的fd發生對應的事件后,將會喚醒epollFd,此時將生成對應response加入的response List中,等待處理。一旦response被處理,就會調用對應的回調函數。

2、注意事項
MessageQueue在Java層和Native層有各自的存儲結構,可以分別增加消息。從處理邏輯來看,會優先處理native層的Message,然后處理Native層生成的response,最后才是處理Java層的Message。

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持武林網。

發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 巩留县| 行唐县| 广德县| 宜春市| 霍林郭勒市| 滦南县| 华蓥市| 安吉县| 铜陵市| 奉贤区| 宿松县| 博爱县| 锦州市| 开远市| 富裕县| 庆云县| 邵阳市| 大理市| 通榆县| 石阡县| 宣武区| 瓮安县| 招远市| 年辖:市辖区| 庆阳市| 五家渠市| 江都市| 道孚县| 买车| 兴国县| 桐柏县| 重庆市| 吐鲁番市| 库尔勒市| 察哈| 台中县| 长岛县| 济源市| 临西县| 尼勒克县| 大厂|