国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 系統 > Android > 正文

Android的消息機制

2019-12-12 03:50:58
字體:
來源:轉載
供稿:網友

一、簡介

Android的消息機制主要是指Handler的運行機制,那么什么是Handler的運行機制那?通俗的來講就是,使用Handler將子線程的Message放入主線程的Messagequeue中,在主線程使用。

二、學習內容

學習Android的消息機制,我們需要先了解如下內容。

  1. 消息的表示:Message
  2. 消息隊列:MessageQueue
  3. 消息循環,用于循環取出消息進行處理:Looper
  4. 消息處理,消息循環從消息隊列中取出消息后要對消息進行處理:Handler

平常我們接觸的大多是Handler和Message,今天就讓我們來深入的了解一下他們。

三、代碼詳解

一般而言我們都是這樣使用Handler的

xxHandler.sendEmptyMessage(xxx);

當然還有其他表示方法,但我們深入到源代碼中,會發現,他們最終都調用了一個方法

public boolean sendMessageAtTime(Message msg, long uptimeMillis) { MessageQueue queue = mQueue; if (queue == null) {  RuntimeException e = new RuntimeException(   this + " sendMessageAtTime() called with no mQueue");  Log.w("Looper", e.getMessage(), e);  return false; } return enqueueMessage(queue, msg, uptimeMillis); }

sendMessageAtTime()方法,但這依然不是結束,我們可以看到最后一句enqueueMessage(queue, msg, uptimeMillis);按字面意思來說插入一條消息,那么疑問來了,消息插入了哪里。

boolean enqueueMessage(Message msg, long when) { if (msg.target == null) {  throw new IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) {  throw new IllegalStateException(msg + " This message is already in use."); } synchronized (this) {  if (mQuitting) {  IllegalStateException e = new IllegalStateException(   msg.target + " sending message to a Handler on a dead thread");  Log.w(TAG, e.getMessage(), e);  msg.recycle();  return false;  }  msg.markInUse();  msg.when = when;  Message p = mMessages;  boolean needWake;  if (p == null || when == 0 || when < p.when) {  // New head, wake up the event queue if blocked.  msg.next = p;  mMessages = msg;  needWake = mBlocked;  } else {  // Inserted within the middle of the queue. Usually we don't have to wake  // up the event queue unless there is a barrier at the head of the queue  // and the message is the earliest asynchronous message in the queue.  needWake = mBlocked && p.target == null && msg.isAsynchronous();  Message prev;  for (;;) {   prev = p;   p = p.next;   if (p == null || when < p.when) {   break;   }   if (needWake && p.isAsynchronous()) {   needWake = false;   }  }  msg.next = p; // invariant: p == prev.next  prev.next = msg;  }  // We can assume mPtr != 0 because mQuitting is false.  if (needWake) {  nativeWake(mPtr);  } } return true; }

進入源代碼,我們發現,我們需要了解一個新類Messagequeue。

雖然我們一般把他叫做消息隊列,但是通過研究,我們發下,它實際上是一種單鏈表的數據結構,而我們對它的操作主要是插入和讀取。

看代碼33-44,學過數據結構,我們可以輕松的看出,這是一個單鏈表的插入末尾的操作。

這樣就明白了,我們send方法實質就是向Messagequeue中插入這么一條消息,那么另一個問題隨之而來,我們該如何處理這條消息。

處理消息我們離不開一個重要的,Looper。那么它在消息機制中又有什么樣的作用那?

Looper扮演著消息循環的角色,具體而言它會不停的從MessageQueue中查看是否有新消息如果有新消息就會立刻處理,否則就已知阻塞在那里,現在讓我們來看一下他的代碼實現。

首先是構造方法

 private Looper(boolean quitAllowed) { mQueue = new MessageQueue(quitAllowed); mThread = Thread.currentThread(); }

可以發現,它將當前線程對象保存了起來。我們繼續

Looper在新線程創建過程中有兩個重要的方法looper.prepare() looper.loop

new Thread(){ public void run(){ Looper.prepare(); Handler handler = new Handler(); Looper.loop(); }}.start();

我們先來看prepare()方法

private static void prepare(boolean quitAllowed) { if (sThreadLocal.get() != null) {  throw new RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }

咦,我們可以看到這里面又有一個ThreadLocal類,我們在這簡單了解一下,他的特性,set(),get()方法。

首先ThreadLocal是一個線程內部的數據存儲類,通過它可以在指定的線程中存儲數據,數據存儲后,只有在制定線程中可以獲取存儲的數據,對于其他線程而言則無法獲取到數據。簡單的來說。套用一個列子:

private ThreadLocal<Boolean> mBooleanThreadLocal = new  ThreadLocal<Boolean>();//mBooleanThreadLocal.set(true);Log.d(TAH,"Threadmain"+mBooleanThreadLocal.get());new Thread("Thread#1"){ public void run(){ mBooleanThreadLocal.set(false); Log.d(TAH,"Thread#1"+mBooleanThreadLocal.get()); }; }.start();new Thread("Thread#2"){ public void run(){ Log.d(TAH,"Thread#2"+mBooleanThreadLocal.get()); }; }.start();

上面的代碼運行后,我們會發現,每一個線程的值都是不同的,即使他們訪問的是同意個ThreadLocal對象。

那么我們接下來會在之后分析源碼,為什么他會不一樣。現在我們跳回prepare()方法那一步,loop()方法源碼貼上

public static void loop() { final Looper me = myLooper(); if (me == null) {  throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); final long ident = Binder.clearCallingIdentity(); for (;;) {  Message msg = queue.next(); // might block  if (msg == null) {  // No message indicates that the message queue is quitting.  return;  }  // This must be in a local variable, in case a UI event sets the logger  Printer logging = me.mLogging;  if (logging != null) {  logging.println(">>>>> Dispatching to " + msg.target + " " +   msg.callback + ": " + msg.what);  }  msg.target.dispatchMessage(msg);  if (logging != null) {  logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);  }  // Make sure that during the course of dispatching the  // identity of the thread wasn't corrupted.  final long newIdent = Binder.clearCallingIdentity();  if (ident != newIdent) {  Log.wtf(TAG, "Thread identity changed from 0x"   + Long.toHexString(ident) + " to 0x"   + Long.toHexString(newIdent) + " while dispatching to "   + msg.target.getClass().getName() + " "   + msg.callback + " what=" + msg.what);  }  msg.recycleUnchecked(); } }

首先loop()方法,獲得這個線程的Looper,若沒有拋出異常。再獲得新建的Messagequeue,在這里我們有必要補充一下Messagequeue的next()方法。

Message next() { // Return here if the message loop has already quit and been disposed. // This can happen if the application tries to restart a looper after quit // which is not supported. final long ptr = mPtr; if (ptr == 0) {  return null; } int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) {  if (nextPollTimeoutMillis != 0) {  Binder.flushPendingCommands();  }  nativePollOnce(ptr, nextPollTimeoutMillis);  synchronized (this) {  // Try to retrieve the next message. Return if found.  final long now = SystemClock.uptimeMillis();  Message prevMsg = null;  Message msg = mMessages;  if (msg != null && msg.target == null) {   // Stalled by a barrier. Find the next asynchronous message in the queue.   do {   prevMsg = msg;   msg = msg.next;   } while (msg != null && !msg.isAsynchronous());  }  if (msg != null) {   if (now < msg.when) {   // Next message is not ready. Set a timeout to wake up when it is ready.   nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);   } else {   // Got a message.   mBlocked = false;   if (prevMsg != null) {    prevMsg.next = msg.next;   } else {    mMessages = msg.next;   }   msg.next = null;   if (DEBUG) Log.v(TAG, "Returning message: " + msg);   msg.markInUse();   return msg;   }  } else {   // No more messages.   nextPollTimeoutMillis = -1;  }  // Process the quit message now that all pending messages have been handled.  if (mQuitting) {   dispose();   return null;  }  // If first time idle, then get the number of idlers to run.  // Idle handles only run if the queue is empty or if the first message  // in the queue (possibly a barrier) is due to be handled in the future.  if (pendingIdleHandlerCount < 0   && (mMessages == null || now < mMessages.when)) {   pendingIdleHandlerCount = mIdleHandlers.size();  }  if (pendingIdleHandlerCount <= 0) {   // No idle handlers to run. Loop and wait some more.   mBlocked = true;   continue;  }  if (mPendingIdleHandlers == null) {   mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];  }  mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);  }  // Run the idle handlers.  // We only ever reach this code block during the first iteration.  for (int i = 0; i < pendingIdleHandlerCount; i++) {  final IdleHandler idler = mPendingIdleHandlers[i];  mPendingIdleHandlers[i] = null; // release the reference to the handler  boolean keep = false;  try {   keep = idler.queueIdle();  } catch (Throwable t) {   Log.wtf(TAG, "IdleHandler threw exception", t);  }  if (!keep) {   synchronized (this) {   mIdleHandlers.remove(idler);   }  }  }  // Reset the idle handler count to 0 so we do not run them again.  pendingIdleHandlerCount = 0;  // While calling an idle handler, a new message could have been delivered  // so go back and look again for a pending message without waiting.  nextPollTimeoutMillis = 0; } }

從24-30我們可以看到,他遍歷了整個queue找到msg,若是msg為null,我們可以看到50,他把nextPollTimeoutMillis = -1;實際上是等待enqueueMessage的nativeWake來喚醒。較深的源碼涉及了native層代碼,有興趣可以研究一下。簡單來說next()方法,在有消息是會返回這條消息,若沒有,則阻塞在這里。

我們回到loop()方法27msg.target.dispatchMessage(msg);我們看代碼

public void dispatchMessage(Message msg) { if (msg.callback != null) {  handleCallback(msg); } else {  if (mCallback != null) {  if (mCallback.handleMessage(msg)) {   return;  }  }  handleMessage(msg); } }

msg.target實際上就是發送這條消息的Handler,我們可以看到它將msg交給dispatchMessage(),最后調用了我們熟悉的方法handleMessage(msg);

三、總結

到目前為止,我們了解了android的消息機制流程,但它實際上還涉及了深層的native層方法.

以上就是本文的全部內容,希望本文的內容對大家的學習或者工作能帶來一定的幫助,同時也希望多多支持武林網!

發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 米泉市| 安仁县| 明光市| 扎兰屯市| 珲春市| 舟山市| 黔江区| 中卫市| 阳城县| 保定市| 龙陵县| 乌鲁木齐县| 祁东县| 会泽县| 南康市| 乌兰浩特市| 湖南省| 新巴尔虎左旗| 辽阳县| 偃师市| 彩票| 湖州市| 那坡县| 房山区| 壶关县| 定襄县| 门头沟区| 望奎县| 安达市| 库伦旗| 灌云县| 潜江市| 金门县| 新巴尔虎右旗| 吉木萨尔县| 苏尼特左旗| 渭南市| 海兴县| 烟台市| 衡南县| 于都县|