国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

Python編程語言的35個(gè)與眾不同之處(語言特征和使用技巧)

2019-11-25 18:20:23
字體:
供稿:網(wǎng)友

一、Python介紹

  從我開始學(xué)習(xí)Python時(shí)我就決定維護(hù)一個(gè)經(jīng)常使用的“竅門”列表。不論何時(shí)當(dāng)我看到一段讓我覺得“酷,這樣也行!”的代碼時(shí)(在一個(gè)例子中、在StackOverflow、在開源碼軟件中,等等),我會(huì)嘗試它直到理解它,然后把它添加到列表中。這篇文章是清理過列表的一部分。如果你是一個(gè)有經(jīng)驗(yàn)的Python程序員,盡管你可能已經(jīng)知道一些,但你仍能發(fā)現(xiàn)一些你不知道的。如果你是一個(gè)正在學(xué)習(xí)Python的C、C++或Java程序員,或者剛開始學(xué)習(xí)編程,那么你會(huì)像我一樣發(fā)現(xiàn)它們中的很多非常有用。

每個(gè)竅門或語言特性只能通過實(shí)例來驗(yàn)證,無需過多解釋。雖然我已盡力使例子清晰,但它們中的一些仍會(huì)看起來有些復(fù)雜,這取決于你的熟悉程度。所以如果看過例子后還不清楚的話,標(biāo)題能夠提供足夠的信息讓你通過Google獲取詳細(xì)的內(nèi)容。

二、Python的語言特征

列表按難度排序,常用的語言特征和技巧放在前面。

1. 分拆

復(fù)制代碼 代碼如下:

>>> a, b, c = 1, 2, 3
>>> a, b, c
(1, 2, 3)
>>> a, b, c = [1, 2, 3]
>>> a, b, c
(1, 2, 3)
>>> a, b, c = (2 * i + 1 for i in range(3))
>>> a, b, c
(1, 3, 5)
>>> a, (b, c), d = [1, (2, 3), 4]
>>> a
1
>>> b
2
>>> c
3
>>> d
4

2.交換變量分拆

復(fù)制代碼 代碼如下:

>>> a, b = 1, 2
>>> a, b = b, a
>>> a, b
(2, 1)

3.拓展分拆 (Python 3下適用)

復(fù)制代碼 代碼如下:

>>> a, *b, c = [1, 2, 3, 4, 5]
>>> a
1
>>> b
[2, 3, 4]
>>> c
5

4.負(fù)索引
復(fù)制代碼 代碼如下:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-1]
10
>>> a[-3]
8

5.列表切片 (a[start:end])
復(fù)制代碼 代碼如下:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[2:8]
[2, 3, 4, 5, 6, 7]

6.使用負(fù)索引的列表切片
復(fù)制代碼 代碼如下:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-4:-2]
[7, 8]

7.帶步進(jìn)值的列表切片 (a[start:end:step])
復(fù)制代碼 代碼如下:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::2]
[0, 2, 4, 6, 8, 10]
>>> a[::3]
[0, 3, 6, 9]
>>> a[2:8:2]
[2, 4, 6]

8.負(fù)步進(jìn)值得列表切片
復(fù)制代碼 代碼如下:

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::-1]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> a[::-2]
[10, 8, 6, 4, 2, 0]

9.列表切片賦值
復(fù)制代碼 代碼如下:

>>> a = [1, 2, 3, 4, 5]
>>> a[2:3] = [0, 0]
>>> a
[1, 2, 0, 0, 4, 5]
>>> a[1:1] = [8, 9]
>>> a
[1, 8, 9, 2, 0, 0, 4, 5]
>>> a[1:-1] = []
>>> a
[1, 5]

10.命名切片 (slice(start, end, step))
復(fù)制代碼 代碼如下:

>>> a = [0, 1, 2, 3, 4, 5]
>>> LASTTHREE = slice(-3, None)
>>> LASTTHREE
slice(-3, None, None)
>>> a[LASTTHREE]
[3, 4, 5]

11.zip打包解包列表和倍數(shù)
復(fù)制代碼 代碼如下:

>>> a = [1, 2, 3]
>>> b = ['a', 'b', 'c']
>>> z = zip(a, b)
>>> z
[(1, 'a'), (2, 'b'), (3, 'c')]
>>> zip(*z)
[(1, 2, 3), ('a', 'b', 'c')]

12.使用zip合并相鄰的列表項(xiàng)
復(fù)制代碼 代碼如下:

>>> a = [1, 2, 3, 4, 5, 6]
>>> zip(*([iter(a)] * 2))
[(1, 2), (3, 4), (5, 6)]
 
>>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]
 
>>> zip(a[::2], a[1::2])
[(1, 2), (3, 4), (5, 6)]
 
>>> zip(a[::3], a[1::3], a[2::3])
[(1, 2, 3), (4, 5, 6)]
 
>>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]

13.使用zip和iterators生成滑動(dòng)窗口 (n -grams)
復(fù)制代碼 代碼如下:

>>> from itertools import islice
>>> def n_grams(a, n):
...     z = (islice(a, i, None) for i in range(n))
...     return zip(*z)
...
>>> a = [1, 2, 3, 4, 5, 6]
>>> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
>>> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

14.使用zip反轉(zhuǎn)字典
復(fù)制代碼 代碼如下:

>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> m.items()
[('a', 1), ('c', 3), ('b', 2), ('d', 4)]
>>> zip(m.values(), m.keys())
[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]
>>> mi = dict(zip(m.values(), m.keys()))
>>> mi
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

15.攤平列表:
復(fù)制代碼 代碼如下:

>>> a = [[1, 2], [3, 4], [5, 6]]
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6]
 
>>> sum(a, [])
[1, 2, 3, 4, 5, 6]
 
>>> [x for l in a for x in l]
[1, 2, 3, 4, 5, 6]
 
>>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> [x for l1 in a for l2 in l1 for x in l2]
[1, 2, 3, 4, 5, 6, 7, 8]
 
>>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]
>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]
>>> flatten(a)
[1, 2, 3, 4, 5, 6, 7, 8]
 

注意: 根據(jù)Python的文檔,itertools.chain.from_iterable是首選。

16.生成器表達(dá)式

復(fù)制代碼 代碼如下:

>>> g = (x ** 2 for x in xrange(10))
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> sum(x ** 3 for x in xrange(10))
2025
>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)
408

17.迭代字典
復(fù)制代碼 代碼如下:

>>> m = {x: x ** 2 for x in range(5)}
>>> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
 
>>> m = {x: 'A' + str(x) for x in range(10)}
>>> m
{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}

18.通過迭代字典反轉(zhuǎn)字典
復(fù)制代碼 代碼如下:

>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> m
{'d': 4, 'a': 1, 'b': 2, 'c': 3}
>>> {v: k for k, v in m.items()}
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

19.命名序列 (collections.namedtuple)
復(fù)制代碼 代碼如下:

>>> Point = collections.namedtuple('Point', ['x', 'y'])
>>> p = Point(x=1.0, y=2.0)
>>> p
Point(x=1.0, y=2.0)
>>> p.x
1.0
>>> p.y
2.0

20.命名列表的繼承:
復(fù)制代碼 代碼如下:

>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):
...     __slots__ = ()
...     def __add__(self, other):
...             return Point(x=self.x + other.x, y=self.y + other.y)
...
>>> p = Point(x=1.0, y=2.0)
>>> q = Point(x=2.0, y=3.0)
>>> p + q
Point(x=3.0, y=5.0)

21.集合及集合操作
復(fù)制代碼 代碼如下:

>>> A = {1, 2, 3, 3}
>>> A
set([1, 2, 3])
>>> B = {3, 4, 5, 6, 7}
>>> B
set([3, 4, 5, 6, 7])
>>> A | B
set([1, 2, 3, 4, 5, 6, 7])
>>> A & B
set([3])
>>> A - B
set([1, 2])
>>> B - A
set([4, 5, 6, 7])
>>> A ^ B
set([1, 2, 4, 5, 6, 7])
>>> (A ^ B) == ((A - B) | (B - A))
True

22.多重集及其操作 (collections.Counter)
復(fù)制代碼 代碼如下:

>>> A = collections.Counter([1, 2, 2])
>>> B = collections.Counter([2, 2, 3])
>>> A
Counter({2: 2, 1: 1})
>>> B
Counter({2: 2, 3: 1})
>>> A | B
Counter({2: 2, 1: 1, 3: 1})
>>> A & B
Counter({2: 2})
>>> A + B
Counter({2: 4, 1: 1, 3: 1})
>>> A - B
Counter({1: 1})
>>> B - A
Counter({3: 1})

23.迭代中最常見的元素 (collections.Counter)
復(fù)制代碼 代碼如下:

>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
>>> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
>>> A.most_common(1)
[(3, 4)]
>>> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]

24.雙端隊(duì)列 (collections.deque)
復(fù)制代碼 代碼如下:

>>> Q = collections.deque()
>>> Q.append(1)
>>> Q.appendleft(2)
>>> Q.extend([3, 4])
>>> Q.extendleft([5, 6])
>>> Q
deque([6, 5, 2, 1, 3, 4])
>>> Q.pop()
4
>>> Q.popleft()
6
>>> Q
deque([5, 2, 1, 3])
>>> Q.rotate(3)
>>> Q
deque([2, 1, 3, 5])
>>> Q.rotate(-3)
>>> Q
deque([5, 2, 1, 3])

25.有最大長(zhǎng)度的雙端隊(duì)列 (collections.deque)
復(fù)制代碼 代碼如下:

>>> last_three = collections.deque(maxlen=3)
>>> for i in xrange(10):
...     last_three.append(i)
...     print ', '.join(str(x) for x in last_three)
...
0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
6, 7, 8
7, 8, 9

26.字典排序 (collections.OrderedDict)
復(fù)制代碼 代碼如下:

>>> m = dict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
1, 0, 3, 2, 5, 4, 7, 6, 9, 8
>>> m = collections.OrderedDict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))
>>> print ', '.join(m.keys())
10, 9, 8, 7, 6, 5, 4, 3, 2, 1

27.缺省字典 (collections.defaultdict)
復(fù)制代碼 代碼如下:

>>> m = dict()
>>> m['a']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'a'
>>>
>>> m = collections.defaultdict(int)
>>> m['a']
0
>>> m['b']
0
>>> m = collections.defaultdict(str)
>>> m['a']
''
>>> m['b'] += 'a'
>>> m['b']
'a'
>>> m = collections.defaultdict(lambda: '[default value]')
>>> m['a']
'[default value]'
>>> m['b']
'[default value]'

28. 用缺省字典表示簡(jiǎn)單的樹
復(fù)制代碼 代碼如下:

>>> import json
>>> tree = lambda: collections.defaultdict(tree)
>>> root = tree()
>>> root['menu']['id'] = 'file'
>>> root['menu']['value'] = 'File'
>>> root['menu']['menuitems']['new']['value'] = 'New'
>>> root['menu']['menuitems']['new']['onclick'] = 'new();'
>>> root['menu']['menuitems']['open']['value'] = 'Open'
>>> root['menu']['menuitems']['open']['onclick'] = 'open();'
>>> root['menu']['menuitems']['close']['value'] = 'Close'
>>> root['menu']['menuitems']['close']['onclick'] = 'close();'
>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))
{
    "menu": {
        "id": "file",
        "menuitems": {
            "close": {
                "onclick": "close();",
                "value": "Close"
            },
            "new": {
                "onclick": "new();",
                "value": "New"
            },
            "open": {
                "onclick": "open();",
                "value": "Open"
            }
        },
        "value": "File"
    }
}
 

(到https://gist.github.com/hrldcpr/2012250查看詳情)

29.映射對(duì)象到唯一的序列數(shù) (collections.defaultdict)

復(fù)制代碼 代碼如下:

>>> import itertools, collections
>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)
>>> value_to_numeric_map['a']
0
>>> value_to_numeric_map['b']
1
>>> value_to_numeric_map['c']
2
>>> value_to_numeric_map['a']
0
>>> value_to_numeric_map['b']
1

30.最大最小元素 (heapq.nlargest和heapq.nsmallest)
復(fù)制代碼 代碼如下:

>>> a = [random.randint(0, 100) for __ in xrange(100)]
>>> heapq.nsmallest(5, a)
[3, 3, 5, 6, 8]
>>> heapq.nlargest(5, a)
[100, 100, 99, 98, 98]

31.笛卡爾乘積 (itertools.product)
復(fù)制代碼 代碼如下:

>>> for p in itertools.product([1, 2, 3], [4, 5]):
(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)
>>> for p in itertools.product([0, 1], repeat=4):
...     print ''.join(str(x) for x in p)
...
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

32.組合的組合和置換 (itertools.combinations 和 itertools.combinations_with_replacement)
復(fù)制代碼 代碼如下:

>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):
...     print ''.join(str(x) for x in c)
...
123
124
125
134
135
145
234
235
245
345
>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):
...     print ''.join(str(x) for x in c)
...
11
12
13
22
23
33

33.排序 (itertools.permutations)

復(fù)制代碼 代碼如下:

>>> for p in itertools.permutations([1, 2, 3, 4]):
...     print ''.join(str(x) for x in p)
...
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321

34.鏈接的迭代 (itertools.chain)
復(fù)制代碼 代碼如下:

>>> a = [1, 2, 3, 4]
>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):
...     print p
...
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))
...     print subset
...
()
(1,)
(2,)
(3,)
(4,)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
(1, 2, 3, 4)

35.按給定值分組行 (itertools.groupby)
復(fù)制代碼 代碼如下:

>>> from operator import itemgetter
>>> import itertools
>>> with open('contactlenses.csv', 'r') as infile:
...     data = [line.strip().split(',') for line in infile]
...
>>> data = data[1:]
>>> def print_data(rows):
...     print '/n'.join('/t'.join('{: <16}'.format(s) for s in row) for row in rows)
...
 
>>> print_data(data)
young               myope                   no                      reduced                 none
young               myope                   no                      normal                  soft
young               myope                   yes                     reduced                 none
young               myope                   yes                     normal                  hard
young               hypermetrope            no                      reduced                 none
young               hypermetrope            no                      normal                  soft
young               hypermetrope            yes                     reduced                 none
young               hypermetrope            yes                     normal                  hard
pre-presbyopic      myope                   no                      reduced                 none
pre-presbyopic      myope                   no                      normal                  soft
pre-presbyopic      myope                   yes                     reduced                 none
pre-presbyopic      myope                   yes                     normal                  hard
pre-presbyopic      hypermetrope            no                      reduced                 none
pre-presbyopic      hypermetrope            no                      normal                  soft
pre-presbyopic      hypermetrope            yes                     reduced                 none
pre-presbyopic      hypermetrope            yes                     normal                  none
presbyopic          myope                   no                      reduced                 none
presbyopic          myope                   no                      normal                  none
presbyopic          myope                   yes                     reduced                 none
presbyopic          myope                   yes                     normal                  hard
presbyopic          hypermetrope            no                      reduced                 none
presbyopic          hypermetrope            no                      normal                  soft
presbyopic          hypermetrope            yes                     reduced                 none
presbyopic          hypermetrope            yes                     normal                  none
 
>>> data.sort(key=itemgetter(-1))
>>> for value, group in itertools.groupby(data, lambda r: r[-1]):
...     print '-----------'
...     print 'Group: ' + value
...     print_data(group)
...
-----------
Group: hard
young               myope                   yes                     normal                  hard
young               hypermetrope            yes                     normal                  hard
pre-presbyopic      myope                   yes                     normal                  hard
presbyopic          myope                   yes                     normal                  hard
-----------
Group: none
young               myope                   no                      reduced                 none
young               myope                   yes                     reduced                 none
young               hypermetrope            no                      reduced                 none
young               hypermetrope            yes                     reduced                 none
pre-presbyopic      myope                   no                      reduced                 none
pre-presbyopic      myope                   yes                     reduced                 none
pre-presbyopic      hypermetrope            no                      reduced                 none
pre-presbyopic      hypermetrope            yes                     reduced                 none
pre-presbyopic      hypermetrope            yes                     normal                  none
presbyopic          myope                   no                      reduced                 none
presbyopic          myope                   no                      normal                  none
presbyopic          myope                   yes                     reduced                 none
presbyopic          hypermetrope            no                      reduced                 none
presbyopic          hypermetrope            yes                     reduced                 none
presbyopic          hypermetrope            yes                     normal                  none
-----------
Group: soft
young               myope                   no                      normal                  soft
young               hypermetrope            no                      normal                  soft
pre-presbyopic      myope                   no                      normal                  soft
pre-presbyopic      hypermetrope            no                      normal                  soft
presbyopic          hypermetrope            no                      normal 

發(fā)表評(píng)論 共有條評(píng)論
用戶名: 密碼:
驗(yàn)證碼: 匿名發(fā)表
主站蜘蛛池模板: 庆云县| 平乡县| 鄂伦春自治旗| 霸州市| 漳浦县| 云梦县| 英超| 莱西市| 连江县| 昌黎县| 涡阳县| 施秉县| 榆中县| 开远市| 沈丘县| 确山县| 定西市| 新乡县| 临江市| 陕西省| 东至县| 宜章县| 清河县| 浮梁县| 通山县| 景泰县| 松原市| 裕民县| 探索| 南宁市| 桑植县| 永修县| 遵化市| 绿春县| 黎城县| 财经| 迁西县| 万荣县| 隆子县| 马关县| 扶绥县|