国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

利用Django框架中select_related和prefetch_related函數對數據庫查詢優化

2019-11-25 17:52:22
字體:
來源:轉載
供稿:網友

實例的背景說明

假定一個個人信息系統,需要記錄系統中各個人的故鄉、居住地、以及到過的城市。數據庫設計如下:

201541150650059.jpg (591×250)

Models.py 內容如下:
 

from django.db import models class Province(models.Model): name = models.CharField(max_length=10) def __unicode__(self):  return self.name class City(models.Model): name = models.CharField(max_length=5) province = models.ForeignKey(Province) def __unicode__(self):  return self.name class Person(models.Model): firstname = models.CharField(max_length=10) lastname = models.CharField(max_length=10) visitation = models.ManyToManyField(City, related_name = "visitor") hometown = models.ForeignKey(City, related_name = "birth") living  = models.ForeignKey(City, related_name = "citizen") def __unicode__(self):  return self.firstname + self.lastname

注1:創建的app名為“QSOptimize”

注2:為了簡化起見,`qsoptimize_province` 表中只有2條數據:湖北省和廣東省,`qsoptimize_city`表中只有三條數據:武漢市、十堰市和廣州市

如果我們想要獲得所有家鄉是湖北的人,最無腦的做法是先獲得湖北省,再獲得湖北的所有城市,最后獲得故鄉是這個城市的人。就像這樣:
 

>>> hb = Province.objects.get(name__iexact=u"湖北省")>>> people = []>>> for city in hb.city_set.all():... people.extend(city.birth.all())...

顯然這不是一個明智的選擇,因為這樣做會導致1+(湖北省城市數)次SQL查詢。反正是個反例,導致的查詢和獲得掉結果就不列出來了。
prefetch_related() 或許是一個好的解決方法,讓我們來看看。
 

>>> hb = Province.objects.prefetch_related("city_set__birth").objects.get(name__iexact=u"湖北省")>>> people = []>>> for city in hb.city_set.all():... people.extend(city.birth.all())...

因為是一個深度為2的prefetch,所以會導致3次SQL查詢:
 

SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`FROM `QSOptimize_province`WHERE `QSOptimize_province`.`name` LIKE '湖北省' ; SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`FROM `QSOptimize_city`WHERE `QSOptimize_city`.`province_id` IN (1); SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,`QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`FROM `QSOptimize_person`WHERE `QSOptimize_person`.`hometown_id` IN (1, 3);

嗯…看上去不錯,但是3次查詢么?倒過來查詢可能會更簡單?
 

>>> people = list(Person.objects.select_related("hometown__province").filter(hometown__province__name__iexact=u"湖北省")) SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`,`QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`, `QSOptimize_city`.`id`,`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`FROM `QSOptimize_person`INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`hometown_id` = `QSOptimize_city`.`id`)INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)WHERE `QSOptimize_province`.`name` LIKE '湖北省'; +----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+| id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name |+----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+| 1 | 張  | 三  |   3 |   1 | 3 | 十堰市 |   1 | 1 | 湖北省 || 2 | 李  | 四  |   1 |   3 | 1 | 武漢市 |   1 | 1 | 湖北省 || 3 | 王  | 麻子  |   3 |   2 | 3 | 十堰市 |   1 | 1 | 湖北省 |+----+-----------+----------+-------------+-----------+----+--------+-------------+----+--------+3 rows in set (0.00 sec)

完全沒問題。不僅SQL查詢的數量減少了,python程序上也精簡了。
select_related()的效率要高于prefetch_related()。因此,最好在能用select_related()的地方盡量使用它,也就是說,對于ForeignKey字段,避免使用prefetch_related()。
聯用
對于同一個QuerySet,你可以同時使用這兩個函數。
在我們一直使用的例子上加一個model:Order (訂單)
 

class Order(models.Model): customer = models.ForeignKey(Person) orderinfo = models.CharField(max_length=50) time  = models.DateTimeField(auto_now_add = True) def __unicode__(self):  return self.orderinfo

如果我們拿到了一個訂單的id 我們要知道這個訂單的客戶去過的省份。因為有ManyToManyField顯然必須要用prefetch_related()。如果只用prefetch_related()會怎樣呢?
 

>>> plist = Order.objects.prefetch_related('customer__visitation__province').get(id=1)>>> for city in plist.customer.visitation.all():... print city.province.name...

顯然,關系到了4個表:Order、Person、City、Province,根據prefetch_related()的特性就得有4次SQL查詢
 

SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time`FROM `QSOptimize_order`WHERE `QSOptimize_order`.`id` = 1 ; SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`FROM `QSOptimize_person`WHERE `QSOptimize_person`.`id` IN (1); SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`,`QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`FROM `QSOptimize_city`INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`)WHERE `QSOptimize_person_visitation`.`person_id` IN (1); SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`FROM `QSOptimize_province`WHERE `QSOptimize_province`.`id` IN (1, 2);
+----+-------------+---------------+---------------------+| id | customer_id | orderinfo  | time    |+----+-------------+---------------+---------------------+| 1 |   1 | Info of Order | 2014-08-10 17:05:48 |+----+-------------+---------------+---------------------+1 row in set (0.00 sec) +----+-----------+----------+-------------+-----------+| id | firstname | lastname | hometown_id | living_id |+----+-----------+----------+-------------+-----------+| 1 | 張  | 三  |   3 |   1 |+----+-----------+----------+-------------+-----------+1 row in set (0.00 sec) +-----------------------+----+--------+-------------+| _prefetch_related_val | id | name | province_id |+-----------------------+----+--------+-------------+|      1 | 1 | 武漢市 |   1 ||      1 | 2 | 廣州市 |   2 ||      1 | 3 | 十堰市 |   1 |+-----------------------+----+--------+-------------+3 rows in set (0.00 sec) +----+--------+| id | name |+----+--------+| 1 | 湖北省 || 2 | 廣東省 |+----+--------+2 rows in set (0.00 sec)

更好的辦法是先調用一次select_related()再調用prefetch_related(),最后再select_related()后面的表
 

>>> plist = Order.objects.select_related('customer').prefetch_related('customer__visitation__province').get(id=1)>>> for city in plist.customer.visitation.all():... print city.province.name...

這樣只會有3次SQL查詢,Django會先做select_related,之后prefetch_related的時候會利用之前緩存的數據,從而避免了1次額外的SQL查詢:

SELECT `QSOptimize_order`.`id`, `QSOptimize_order`.`customer_id`, `QSOptimize_order`.`orderinfo`, `QSOptimize_order`.`time`, `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`, `QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id` FROM `QSOptimize_order` INNER JOIN `QSOptimize_person` ON (`QSOptimize_order`.`customer_id` = `QSOptimize_person`.`id`) WHERE `QSOptimize_order`.`id` = 1 ; SELECT (`QSOptimize_person_visitation`.`person_id`) AS `_prefetch_related_val`, `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id` FROM `QSOptimize_city` INNER JOIN `QSOptimize_person_visitation` ON (`QSOptimize_city`.`id` = `QSOptimize_person_visitation`.`city_id`) WHERE `QSOptimize_person_visitation`.`person_id` IN (1); SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name` FROM `QSOptimize_province` WHERE `QSOptimize_province`.`id` IN (1, 2); +----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+| id | customer_id | orderinfo  | time    | id | firstname | lastname | hometown_id | living_id |+----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+| 1 |   1 | Info of Order | 2014-08-10 17:05:48 | 1 | 張  | 三  |   3 |   1 |+----+-------------+---------------+---------------------+----+-----------+----------+-------------+-----------+1 row in set (0.00 sec) +-----------------------+----+--------+-------------+| _prefetch_related_val | id | name | province_id |+-----------------------+----+--------+-------------+|      1 | 1 | 武漢市 |   1 ||      1 | 2 | 廣州市 |   2 ||      1 | 3 | 十堰市 |   1 |+-----------------------+----+--------+-------------+3 rows in set (0.00 sec) +----+--------+| id | name |+----+--------+| 1 | 湖北省 || 2 | 廣東省 |+----+--------+2 rows in set (0.00 sec)

值得注意的是,可以在調用prefetch_related之前調用select_related,并且Django會按照你想的去做:先select_related,然后利用緩存到的數據prefetch_related。然而一旦prefetch_related已經調用,select_related將不起作用。

 小結

  1.     因為select_related()總是在單次SQL查詢中解決問題,而prefetch_related()會對每個相關表進行SQL查詢,因此select_related()的效率通常比后者高。
  2.     鑒于第一條,盡可能的用select_related()解決問題。只有在select_related()不能解決問題的時候再去想prefetch_related()。
  3.     你可以在一個QuerySet中同時使用select_related()和prefetch_related(),從而減少SQL查詢的次數。
  4.     只有prefetch_related()之前的select_related()是有效的,之后的將會被無視掉。
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 塔城市| 余干县| 敖汉旗| 稻城县| 宁河县| 长子县| 邵阳县| 南召县| 香港 | 肥东县| 公安县| 临沂市| 云林县| 简阳市| 玉树县| 盐城市| 赣州市| 宁蒗| 昌平区| 左云县| 化隆| 宣恩县| 星子县| 阜新市| 邻水| 阜新| 新晃| 西平县| 敖汉旗| 铜梁县| 陇川县| 盘锦市| 扎兰屯市| 贵南县| 泸定县| 旬阳县| 常德市| 绩溪县| 安新县| 莱西市| 清丰县|