本文實(shí)例講述了Python聚類算法之凝聚層次聚類。分享給大家供大家參考,具體如下:
凝聚層次聚類:所謂凝聚的,指的是該算法初始時(shí),將每個(gè)點(diǎn)作為一個(gè)簇,每一步合并兩個(gè)最接近的簇。另外即使到最后,對(duì)于噪音點(diǎn)或是離群點(diǎn)也往往還是各占一簇的,除非過度合并。對(duì)于這里的“最接近”,有下面三種定義。我在實(shí)現(xiàn)是使用了MIN,該方法在合并時(shí),只要依次取當(dāng)前最近的點(diǎn)對(duì),如果這個(gè)點(diǎn)對(duì)當(dāng)前不在一個(gè)簇中,將所在的兩個(gè)簇合并就行:
單鏈(MIN):定義簇的鄰近度為不同兩個(gè)簇的兩個(gè)最近的點(diǎn)之間的距離。
全鏈(MAX):定義簇的鄰近度為不同兩個(gè)簇的兩個(gè)最遠(yuǎn)的點(diǎn)之間的距離。
組平均:定義簇的鄰近度為取自兩個(gè)不同簇的所有點(diǎn)對(duì)鄰近度的平均值。
# scoding=utf-8# Agglomerative Hierarchical Clustering(AHC)import pylab as plfrom operator import itemgetterfrom collections import OrderedDict,Counterpoints = [[int(eachpoint.split('#')[0]), int(eachpoint.split('#')[1])] for eachpoint in open("points","r")]# 初始時(shí)每個(gè)點(diǎn)指派為單獨(dú)一簇groups = [idx for idx in range(len(points))]# 計(jì)算每個(gè)點(diǎn)對(duì)之間的距離disP2P = {}for idx1,point1 in enumerate(points): for idx2,point2 in enumerate(points): if (idx1 < idx2): distance = pow(abs(point1[0]-point2[0]),2) + pow(abs(point1[1]-point2[1]),2) disP2P[str(idx1)+"#"+str(idx2)] = distance# 按距離降序?qū)⒏鱾€(gè)點(diǎn)對(duì)排序disP2P = OrderedDict(sorted(disP2P.iteritems(), key=itemgetter(1), reverse=True))# 當(dāng)前有的簇個(gè)數(shù)groupNum = len(groups)# 過分合并會(huì)帶入噪音點(diǎn)的影響,當(dāng)簇?cái)?shù)減為finalGroupNum時(shí),停止合并finalGroupNum = int(groupNum*0.1)while groupNum > finalGroupNum: # 選取下一個(gè)距離最近的點(diǎn)對(duì) twopoins,distance = disP2P.popitem() pointA = int(twopoins.split('#')[0]) pointB = int(twopoins.split('#')[1]) pointAGroup = groups[pointA] pointBGroup = groups[pointB] # 當(dāng)前距離最近兩點(diǎn)若不在同一簇中,將點(diǎn)B所在的簇中的所有點(diǎn)合并到點(diǎn)A所在的簇中,此時(shí)當(dāng)前簇?cái)?shù)減1 if(pointAGroup != pointBGroup): for idx in range(len(groups)): if groups[idx] == pointBGroup: groups[idx] = pointAGroup groupNum -= 1# 選取規(guī)模最大的3個(gè)簇,其他簇歸為噪音點(diǎn)wantGroupNum = 3finalGroup = Counter(groups).most_common(wantGroupNum)finalGroup = [onecount[0] for onecount in finalGroup]dropPoints = [points[idx] for idx in range(len(points)) if groups[idx] not in finalGroup]# 打印規(guī)模最大的3個(gè)簇中的點(diǎn)group1 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[0]]group2 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[1]]group3 = [points[idx] for idx in xrange(len(points)) if groups[idx]==finalGroup[2]]pl.plot([eachpoint[0] for eachpoint in group1], [eachpoint[1] for eachpoint in group1], 'or')pl.plot([eachpoint[0] for eachpoint in group2], [eachpoint[1] for eachpoint in group2], 'oy')pl.plot([eachpoint[0] for eachpoint in group3], [eachpoint[1] for eachpoint in group3], 'og') # 打印噪音點(diǎn),黑色pl.plot([eachpoint[0] for eachpoint in dropPoints], [eachpoint[1] for eachpoint in dropPoints], 'ok') pl.show()運(yùn)行效果截圖如下:

希望本文所述對(duì)大家Python程序設(shè)計(jì)有所幫助。
新聞熱點(diǎn)
疑難解答
圖片精選