KNN算法(全稱K最近鄰算法),算法的思想很簡(jiǎn)單,簡(jiǎn)單的說(shuō)就是物以類聚,也就是說(shuō)我們從一堆已知的訓(xùn)練集中找出k個(gè)與目標(biāo)最靠近的,然后看他們中最多的分類是哪個(gè),就以這個(gè)為依據(jù)分類。
tile()如
tile(A,n)就是將A重復(fù)n次
a = np.array([0, 1, 2])np.tile(a, 2)array([0, 1, 2, 0, 1, 2])np.tile(a, (2, 2))array([[0, 1, 2, 0, 1, 2],[0, 1, 2, 0, 1, 2]])np.tile(a, (2, 1, 2))array([[[0, 1, 2, 0, 1, 2]],[[0, 1, 2, 0, 1, 2]]])b = np.array([[1, 2], [3, 4]])np.tile(b, 2)array([[1, 2, 1, 2],[3, 4, 3, 4]])np.tile(b, (2, 1))array([[1, 2],[3, 4],[1, 2],[3, 4]])`createDataSet()生成測(cè)試數(shù)組kNNclassify(inputX, dataSet, labels, k)分類函數(shù)
1 #coding=utf-8 2 from numpy import * 3 import Operator 4 5 def createDataSet(): 6 group = array([[1.0, 0.9], [1.0, 1.0], [0.1, 0.2], [0.0, 0.1]]) 7 labels = ['A','A','B','B'] 8 return group,labels 9 #inputX表示輸入向量(也就是我們要判斷它屬于哪一類的)10 #dataSet表示訓(xùn)練樣本11 #label表示訓(xùn)練樣本的標(biāo)簽12 #k是最近鄰的參數(shù),選最近k個(gè)13 def kNNclassify(inputX, dataSet, labels, k):14 dataSetSize = dataSet.shape[0]#計(jì)算有幾個(gè)訓(xùn)練數(shù)據(jù)15 #開(kāi)始計(jì)算歐幾里得距離16 diffMat = tile(inputX, (dataSetSize,1)) - dataSet17 18 sqDiffMat = diffMat ** 219 sqDistances = sqDiffMat.sum(axis=1)#矩陣每一行向量相加20 distances = sqDistances ** 0.521 #歐幾里得距離計(jì)算完畢22 sortedDistance = distances.argsort()23 classCount = {}24 for i in xrange(k):25 voteLabel = labels[sortedDistance[i]]26 classCount[voteLabel] = classCount.get(voteLabel,0) + 127 res = max(classCount)28 return res29 30 def main():31 group,labels = createDataSet()32 t = kNNclassify([0,0],group,labels,3)33 PRint t34 35 if __name__=='__main__':36 main()37
兩個(gè)數(shù)據(jù)集:training和test。分類的標(biāo)號(hào)在文件名中。像素32*32的。數(shù)據(jù)大概這個(gè)樣子:
kNN的使用,不過(guò)這個(gè)距離算起來(lái)比較復(fù)雜(1024個(gè)特征),主要是要處理如何讀取數(shù)據(jù)這個(gè)問(wèn)題的,比較方面直接調(diào)用就可以了。
速度還是比較慢的,這里數(shù)據(jù)集是:training 2000+,test 900+(i5的CPU)
k=3的時(shí)候要32s+
1 #coding=utf-8 2 from numpy import * 3 import operator 4 import os 5 import time 6 7 def createDataSet(): 8 group = array([[1.0, 0.9], [1.0, 1.0], [0.1, 0.2], [0.0, 0.1]]) 9 labels = ['A','A','B','B']10 return group,labels11 #inputX表示輸入向量(也就是我們要判斷它屬于哪一類的)12 #dataSet表示訓(xùn)練樣本13 #label表示訓(xùn)練樣本的標(biāo)簽14 #k是最近鄰的參數(shù),選最近k個(gè)15 def kNNclassify(inputX, dataSet, labels, k):16 dataSetSize = dataSet.shape[0]#計(jì)算有幾個(gè)訓(xùn)練數(shù)據(jù)17 #開(kāi)始計(jì)算歐幾里得距離18 diffMat = tile(inputX, (dataSetSize,1)) - dataSet19 #diffMat = inputX.repeat(dataSetSize, aixs=1) - dataSet20 sqDiffMat = diffMat ** 221 sqDistances = sqDiffMat.sum(axis=1)#矩陣每一行向量相加22 distances = sqDistances ** 0.523 #歐幾里得距離計(jì)算完畢24 sortedDistance = distances.argsort()25 classCount = {}26 for i in xrange(k):27 voteLabel = labels[sortedDistance[i]]28 classCount[voteLabel] = classCount.get(voteLabel,0) + 129 res = max(classCount)30 return res31 32 def img2vec(filename):33 returnVec = zeros((1,1024))34 fr = open(filename)35 for i in range(32):36 lineStr = fr.readline()37 for j in range(32):38 returnVec[0,32*i+j] = int(lineStr[j])39 return returnVec40 41 def handwritingClassTest(trainingFloder,testFloder,K):42 hwLabels = []43 trainingFileList = os.listdir(trainingFloder)44 m = len(trainingFileList)45 trainingMat = zeros((m,1024))46 for i in range(m):47 fileName = trainingFileList[i]48 fileStr = fileName.split('.')[0]49 classNumStr = int(fileStr.split('_')[0])50 hwLabels.append(classNumStr)51 trainingMat[i,:] = img2vec(trainingFloder+'/'+fileName)52 testFileList = os.listdir(testFloder)53 errorCount = 0.054 mTest = len(testFileList)55 for i in range(mTest):56 fileName = testFileList[i]57 fileStr = fileName.split('.')[0]58 classNumStr = int(fileStr.split('_')[0])59 vectorUnderTest = img2vec(testFloder+'/'+fileName)60 classifierResult = kNNclassify(vectorUnderTest, trainingMat, hwLabels, K)61 #print classifierResult,' ',classNumStr62 if classifierResult != classNumStr:63 errorCount +=164 print 'tatal error ',errorCount65 print 'error rate',errorCount/mTest66 67 def main():68 t1 = time.clock()69 handwritingClassTest('trainingDigits','testDigits',3)70 t2 = time.clock()71 print 'execute ',t2-t172 if __name__=='__main__':73 main()74
新聞熱點(diǎn)
疑難解答
圖片精選
網(wǎng)友關(guān)注