樸素貝葉斯
比如我們想判斷一個(gè)郵件是不是垃圾郵件,那么我們知道的是這個(gè)郵件中的詞的分布,那么我們還要知道:垃圾郵件中某些詞的出現(xiàn)是多少,就可以利用貝葉斯定理得到。
樸素貝葉斯分類器中的一個(gè)假設(shè)是:每個(gè)特征同等重要
loadDataSet()
createVocabList(dataSet)
setOfWords2Vec(vocabList, inputSet)
bagOfWords2VecMN(vocabList, inputSet)
trainNB0(trainMatrix,trainCatergory)
classifyNB(vec2Classify, p0Vec, p1Vec, pClass1)
計(jì)算這個(gè)向量屬于兩個(gè)集合中哪個(gè)的概率高1 #coding=utf-8 2 from numpy import * 3 def loadDataSet(): 4 postingList=[['my', 'dog', 'has', 'flea', 'PRoblems', 'help', 'please'], 5 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], 6 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], 7 ['stop', 'posting', 'stupid', 'worthless', 'garbage'], 8 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], 9 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]10 classVec = [0,1,0,1,0,1] #1 is abusive, 0 not11 return postingList,classVec12 13 #創(chuàng)建一個(gè)帶有所有單詞的列表14 def createVocabList(dataSet):15 vocabSet = set([])16 for document in dataSet:17 vocabSet = vocabSet | set(document)18 return list(vocabSet)19 20 def setOfWords2Vec(vocabList, inputSet):21 retVocabList = [0] * len(vocabList)22 for word in inputSet:23 if word in vocabList:24 retVocabList[vocabList.index(word)] = 125 else:26 print 'word ',word ,'not in dict'27 return retVocabList28 29 #另一種模型 30 def bagOfWords2VecMN(vocabList, inputSet):31 returnVec = [0]*len(vocabList)32 for word in inputSet:33 if word in vocabList:34 returnVec[vocabList.index(word)] += 135 return returnVec36 37 def trainNB0(trainMatrix,trainCatergory):38 numTrainDoc = len(trainMatrix)39 numWords = len(trainMatrix[0])40 pAbusive = sum(trainCatergory)/float(numTrainDoc)41 #防止多個(gè)概率的成績(jī)當(dāng)中的一個(gè)為042 p0Num = ones(numWords)43 p1Num = ones(numWords)44 p0Denom = 2.045 p1Denom = 2.046 for i in range(numTrainDoc):47 if trainCatergory[i] == 1:48 p1Num +=trainMatrix[i]49 p1Denom += sum(trainMatrix[i])50 else:51 p0Num +=trainMatrix[i]52 p0Denom += sum(trainMatrix[i])53 p1Vect = log(p1Num/p1Denom)#處于精度的考慮,否則很可能到限歸零54 p0Vect = log(p0Num/p0Denom)55 return p0Vect,p1Vect,pAbusive56 57 def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):58 p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult59 p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)60 if p1 > p0:61 return 162 else: 63 return 064 65 def testingNB():66 listOPosts,listClasses = loadDataSet()67 myVocabList = createVocabList(listOPosts)68 trainMat=[]69 for postinDoc in listOPosts:70 trainMat.append(setOfWords2Vec(myVocabList, postinDoc))71 p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))72 testEntry = ['love', 'my', 'dalmation']73 thisDoc = array(setOfWords2Vec(myVocabList, testEntry))74 print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)75 testEntry = ['stupid', 'garbage']76 thisDoc = array(setOfWords2Vec(myVocabList, testEntry))77 print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb)78 79 80 def main():81 testingNB()82 83 if __name__ == '__main__':84 main()
新聞熱點(diǎn)
疑難解答
圖片精選
網(wǎng)友關(guān)注