我們?cè)趯W(xué)習(xí)linux權(quán)限指令時(shí),想必大多數(shù)人都會(huì)疑惑為啥用1,2,4來表x,w,r的權(quán)限,而不是1,2,3就行了。 實(shí)際工作中,我們也經(jīng)常需要用到各種組合的狀態(tài),類似權(quán)限,每個(gè)權(quán)限并不唯一只有x,w,r,而是x,w,r任意組合。所以我們就需要任意組合的數(shù)字不重復(fù)。用2的冪就可以達(dá)成這樣的效果。用1,2,3的話,比如x和w(1+2=3),就與r重復(fù)了。
除了以上任意組合的唯一性外,還有個(gè)好處,就是代碼可以很好的用到位運(yùn)算,顯得有效率且簡(jiǎn)潔
比如java nio 的 SelectionKey
public static final int OP_READ = 1 << 0; public static final int OP_WRITE = 1 << 2; public static final int OP_CONNECT = 1 << 3; public static final int OP_ACCEPT = 1 << 4;當(dāng)表示多個(gè)組合的時(shí)候,用|
int interestSet = SelectionKey.OP_READ | SelectionKey.OP_WRITE;當(dāng)判斷是否含有某種狀態(tài)時(shí)
public final boolean isReadable() { return (readyOps() & OP_READ) != 0; }由于計(jì)算機(jī)的識(shí)別是二進(jìn)制的,所以2的冪在項(xiàng)目源碼中非常常見。 比如hashmap的數(shù)組長度,就是2的冪,有兩個(gè)原因。 1、2^n & hash = hash % 2^n, 這個(gè)是在求key所在的數(shù)組位置。只有2的冪,該等式才相等。在源碼里基本都是位運(yùn)算的,效率更好。 2、 2^n 散列的效果是好于其他的。(在其他文章看到的,有例子)
新聞熱點(diǎn)
疑難解答
圖片精選
網(wǎng)友關(guān)注