国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 學院 > 開發設計 > 正文

poj1692 Crossed Matchings(dp,最長公共子序列變形,好題)

2019-11-14 11:55:49
字體:
來源:轉載
供稿:網友

Crossed Matchings
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 2838 Accepted: 1840

Description

There are two rows of positive integer numbers. We can draw one line segment between any two equal numbers, with values r, if one of them is located in the first row and the other one is located in the second row. We call this line segment an r-matching segment. The following figure shows a 3-matching and a 2-matching segment. 
We want to find the maximum number of matching segments possible to draw for the given input, such that: 1. Each a-matching segment should cross exactly one b-matching segment, where a != b . 2. No two matching segments can be drawn from a number. For example, the following matchings are not allowed. 
Write a PRogram to compute the maximum number of matching segments for the input data. Note that this number is always even.

Input

The first line of the input is the number M, which is the number of test cases (1 <= M <= 10). Each test case has three lines. The first line contains N1 and N2, the number of integers on the first and the second row respectively. The next line contains N1 integers which are the numbers on the first row. The third line contains N2 integers which are the numbers on the second row. All numbers are positive integers less than 100.

Output

Output should have one separate line for each test case. The maximum number of matching segments for each test case should be written in one separate line.

Sample Input

36 61 3 1 3 1 33 1 3 1 3 14 41 1 3 3 1 1 3 3 12 111 2 3 3 2 4 1 5 1 3 5 103 1 2 3 2 4 12 1 5 5 3 

Sample Output

608

Source

Tehran 1999

參考博客鏈接

題意:

給出兩行數,求上下匹配的最多組數是多少。匹配規則1.匹配對的數字必須相同2.每個匹配必須有且只能有一個匹配與之相交叉,且相交叉的兩組匹配數字必須不同3.一個數最多只能匹配一次

題解:

一開始我以為是個二分匹配的題目,后來想了好久不知道怎么處理第二個條件。

這題其實是動態規劃題。分析:用dp[i][j]表示第一行取i個數,第二行取j個數字的最多匹配項對于某個dp[i][j]:1.不匹配第一行i個,或不匹配第二行第j個:dp[i][j]=Max(dp[i-1][j],dp[i][j-1])2.如果a[i]==b[j],不產生新匹配,匹配結果為1的值3.若a[i]!=b[j]:a.則第一行從i往前掃,直到掃到第一個a[k1]==b[j](k1 b.同理,第二行從j往前掃,直到掃到第一個b[k2]==a[i](k2 若找不到這樣的k1,k2則不能才產生新匹配,跳過若存在這樣的k1,k2,此時匹配(a[i],b[k2])、(a[k1],b[j])匹配,才生新的匹配情形,匹配數量為:dp[k1-1][k2-1]+2。

#include<iostream>#include<cstdio>#include<algorithm>#include<cstring>#include<vector>#include<queue>#include<stack>using namespace std;#define rep(i,a,n) for (int i=a;i<n;i++)#define per(i,a,n) for (int i=n-1;i>=a;i--)#define pb push_back#define fi first#define se secondtypedef vector<int> VI;typedef long long ll;typedef pair<int,int> PII;const int inf=0x3fffffff;const ll mod=1000000007;const int maxn=100+10;int n,m;int a[maxn],b[maxn];int d[maxn][maxn];int main(){    int cas;    scanf("%d",&cas);    while(cas--)    {        scanf("%d%d",&n,&m);        rep(i,1,n+1) scanf("%d",&a[i]);        rep(i,1,m+1) scanf("%d",&b[i]);        memset(d,0,sizeof(d));        rep(i,2,n+1) rep(j,2,m+1)        {            d[i][j]=max(d[i][j-1],d[i-1][j]);            if(a[i]==b[j]) continue;            else            {                int p1=0,p2=0;                for(int k=i-1;k>0;k--)                {                    if(a[k]==b[j])                    {                        p1=k;                        break;                    }                }                for(int l=j-1;l>0;l--)                {                    if(b[l]==a[i])                    {                        p2=l;                        break;                    }                }                if(p1&&p2) d[i][j]=max(d[i][j],d[p1-1][p2-1]+2);            }        }        printf("%d/n",d[n][m]);    }        return 0;}


發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 遵化市| 伊金霍洛旗| 怀仁县| 札达县| 泰顺县| 新源县| 海南省| 卓尼县| 鄂州市| 水富县| 句容市| 饶平县| 东乡族自治县| 靖安县| 渝中区| 金昌市| 岳池县| 达州市| 湘潭县| 五常市| 青海省| 大城县| 长丰县| 宣武区| 思茅市| 阜阳市| 静安区| 甘孜| 青铜峡市| 云梦县| 东阳市| 吉安县| 古田县| 双牌县| 阿瓦提县| 嵊泗县| 聊城市| 淄博市| 周至县| 涿鹿县| 聂拉木县|