国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 學院 > 開發設計 > 正文

POJ 1408-Fishnet(計算幾何-根據交點求多邊形面積)

2019-11-14 08:51:21
字體:
來源:轉載
供稿:網友

Fishnet
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 2225 Accepted: 1401

Description

A fisherman named Etadokah awoke in a very small island. He could see calm, beautiful and blue sea around the island. The PRevious night he had encountered a terrible storm and had reached this uninhabited island. Some wrecks of his ship were spread around him. He found a square wood-frame and a long thread among the wrecks. He had to survive in this island until someone came and saved him. In order to catch fish, he began to make a kind of fishnet by cutting the long thread into short threads and fixing them at pegs on the square wood-frame. He wanted to know the sizes of the meshes of the fishnet to see whether he could catch small fish as well as large ones. The wood frame is perfectly square with four thin edges on meter long: a bottom edge, a top edge, a left edge, and a right edge. There are n pegs on each edge, and thus there are 4n pegs in total. The positions of pegs are represented by their (x,y)-coordinates. Those of an example case with n=2 are depicted in figures below. The position of the ith peg on the bottom edge is represented by (ai,0). That on the top edge, on the left edge and on the right edge are represented by (bi,1), (0,ci) and (1,di), respectively. The long thread is cut into 2n threads with appropriate lengths. The threads are strained between (ai,0) and (bi,1),and between (0,ci) and (1,di) (i=1,...,n). You should write a program that reports the size of the largest mesh among the (n+1)2 meshes of the fishnet made by fixing the threads at the pegs. You may assume that the thread he found is long enough to make the fishnet and the wood-frame is thin enough for neglecting its thickness.  

Input

The input consists of multiple sub-problems followed by a line containing a zero that indicates the end of input. Each sub-problem is given in the following format. n a1 a2 ... an b1 b2 ... bn c1 c2 ... cn d1 d2 ... dn you may assume 0 < n <= 30, 0 < ai,bi,ci,di < 1

Output

For each sub-problem, the size of the largest mesh should be printed followed by a new line. Each value should be represented by 6 digits after the decimal point, and it may not have an error greater than 0.000001.

Sample Input

20.2000000 0.60000000.3000000 0.80000000.1000000 0.50000000.5000000 0.600000020.3333330 0.66666700.3333330 0.66666700.3333330 0.66666700.3333330 0.666667040.2000000 0.4000000 0.6000000 0.80000000.1000000 0.5000000 0.6000000 0.90000000.2000000 0.4000000 0.6000000 0.80000000.1000000 0.5000000 0.6000000 0.900000020.5138701 0.94762830.1717362 0.17574120.3086521 0.70223130.2264312 0.534534310.40000000.60000000.30000000.50000000

Sample Output

0.2156570.1111120.0789230.2792230.348958

Source

Japan 2001

題目意思:

有一個1×1的木質方格,邊框上有釘子,下上左右分別標記為abcd,分別給出這四個方向的N個釘子的坐標ai、bi、ci和di,則其坐標分別是(ai,0)(bi,1),(0,ci)和(1,di)。

將對應的ai和bi、ci和di位置上的釘子用網線連起來,編織成一個漁網,求漁網中被網線分割成的四邊形網眼的最大面積。

解題思路:

求出網線之間形成的交點坐標,用二維數組保存起來,然后枚舉每個四邊形的四個頂點,計算其面積。

#include<iostream>#include<cstdio>#include<iomanip>#include<cmath>using namespace std;const int INF=1e9;const int MAXN=40;const double eps=1e-3;struct point{    double x,y;} ;point a[MAXN], b[MAXN], c[MAXN], d[MAXN];double det(double x1,double y1,double x2,double y2){    return x1*y2-x2*y1;}double cir(point A,point B,point C,point D)//計算 AB x CD{    return det(B.x-A.x, B.y-A.y, D.x-C.x, D.y-C.y);}double Area(point A,point B,point C,point D){    return fabs(0.5*cir(A,B,A,C))+fabs(0.5*cir(A,B,A,D));}point intersection(point A,point B,point C,point D)//求AB與CD的交點{    point p;    double area1=cir(A,B,A,C);    double area2=cir(A,B,A,D);    p.x=(area2*C.x-area1*D.x)/(area2-area1);//交點計算公式    p.y=(area2*C.y-area1*D.y)/(area2-area1);    return p;}int main(){#ifdef ONLINE_JUDGE#else    freopen("F:/cb/read.txt","r",stdin);    //freopen("F:/cb/out.txt","w",stdout);#endif    ios::sync_with_stdio(false);    cin.tie(0);    int n;    a[0].x=a[0].y=b[0].x=b[0].y=c[0].x=c[0].y=d[0].x=d[0].y=0;    point p[MAXN][MAXN];//(n+2)*(n+2)個交點    while(cin>>n&&n)    {        p[0][0].x=p[0][0].y=0;        p[0][n+1].x=1,p[0][n+1].y=0;        p[n+1][0].x=0,p[n+1][0].y=1;        p[n+1][n+1].x=p[n+1][n+1].y=1;        double ans=-1;//面積        for(int i=0; i<4; ++i)            for(int j=1; j<=n; ++j)            {                double t;                cin>>t;                switch(i)                {                case 0:                    a[j].x=t;                    a[j].y=0;                    p[0][j].x=t;                    p[0][j].y=0;                    break;                case 1:                    b[j].x=t;                    b[j].y=1;                    p[n+1][j].x=t;                    p[n+1][j].y=1;                    break;                case 2:                    c[j].x=0;                    c[j].y=t;                    p[j][0].x=0;                    p[j][0].y=t;                    break;                case 3:                    d[j].x=1;                    d[j].y=t;                    p[j][n+1].x=1;                    p[j][n+1].y=t;                    break;                }            }        int k=1,l=1;        for(int i=1; i<n+1; ++i)//計算交點        {            for(int j=1; j<n+1; ++j)            {                p[i][j]=intersection(a[k],b[k],c[l],d[l]);                ++k;            }            k=1;            ++l;        }        for(int i=0; i<n+1; ++i)//四個一組計算面積        {            for(int j=0; j<n+1; ++j)            {                /*cout<<i<<" "<<j<<" 點="<<"("<<p[i][j].x<<","<<p[i][j].y<<") ";                cout<<"("<<p[i][j+1].x<<","<<p[i][j+1].y<<") ";                cout<<"("<<p[i+1][j].x<<","<<p[i+1][j].y<<") ";                cout<<"("<<p[i+1][j+1].x<<","<<p[i+1][j+1].y<<") "<<endl;*/                //double ar=Area(p[i][j],p[i][j+1],p[i+1][j],p[i+1][j+1]);                double ar=Area(p[i][j],p[i+1][j+1],p[i+1][j],p[i][j+1]);                //cout<<ar<<endl;                if(ar>ans) ans=ar;            }        }        //cout<<"答案:";        cout<<fixed<<setprecision(6)<<ans<<endl;    }    return 0;}/*20.2000000 0.60000000.3000000 0.80000000.1000000 0.50000000.5000000 0.600000020.3333330 0.66666700.3333330 0.66666700.3333330 0.66666700.3333330 0.666667040.2000000 0.4000000 0.6000000 0.80000000.1000000 0.5000000 0.6000000 0.90000000.2000000 0.4000000 0.6000000 0.80000000.1000000 0.5000000 0.6000000 0.900000020.5138701 0.94762830.1717362 0.17574120.3086521 0.70223130.2264312 0.534534310.40000000.60000000.30000000.50000000*/


發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 五华县| 五峰| 高陵县| 辽中县| 昌都县| 正蓝旗| 新宁县| 图们市| 新田县| 岐山县| 隆回县| 崇礼县| 平塘县| 乌拉特前旗| 正定县| 兖州市| 高碑店市| 班玛县| 临海市| 昭觉县| 玉树县| 融水| 永济市| 绥中县| 交城县| 乌恰县| 宁德市| 平遥县| 江阴市| 基隆市| 凤凰县| 秦皇岛市| 大英县| 依安县| 麻城市| 平南县| 城固县| 大足县| 花垣县| 林周县| 平南县|