国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 學(xué)院 > 開發(fā)設(shè)計(jì) > 正文

poj 3146 Lucas定理的使用

2019-11-14 08:50:03
字體:
供稿:網(wǎng)友

Harry is a Junior middle student. He is very interested in the story told by his mathematics teacher about the Yang Hui triangle in the class yesterday. After class he wrote the following numbers to show the triangle our ancestor studied.

 1 
 1 1 
 1 2 1 
 1 3 3 1 
 1 4 6 4 1 
 1 5 10 10 5 1 
 1 6 15 20 15 6 1 
1 7 21 35 35 21 7 1
 …… 

He found many interesting things in the above triangle. It is symmetrical, and the first and the last numbers on each line is 1; there are exactlyi numbers on the line i.

Then Harry studied the elements on every line deeply. Of course, his study is comPRehensive.

Now he wanted to count the number of elements which are the multiple of 3 on each line. He found that the numbers of elements which are the multiple of 3 on line 2, 3, 4, 5, 6, 7, … are 0, 0, 2, 1, 0, 4, … So the numbers of elements which are not divided by 3 are 2, 3, 2, 4, 6, 3, …, respectively. But he also found that it was not an easy job to do so with the number of lines increasing. Furthermore, he is not satisfied with the research on the numbers divided only by 3. So he asked you, an erudite expert, to offer him help. Your kind help would be highly appreciated by him.

Since the result may be very large and rather difficult to compute, you only need to tell Harry the last four digits of the result.

Input

There are multiple test cases in the input file. Each test case contains two numbersP and N, (P < 1000, N ≤ 109), whereP is a prime number and N is a positive decimal integer.

P = 0, N = 0 indicates the end of input file and should not be processed by your program.

Output

For each test case, output the last four digits of the number of elements on theN + 1 line on Yang Hui Triangle which can not be divided by P in the format as indicated in the sample output.

Sample Input
3 43 480 0Sample Output
Case 1: 0004Case 2: 0012

題意:楊輝三角第n+1層上能被素?cái)?shù)p整除的數(shù)的個(gè)數(shù)

Lucas定理:

對于c(n,m)mod p,用a[k]a[k-1]...a[0],b[k]b[k-1]...b[0]來分別表示n和m對應(yīng)的素?cái)?shù)p進(jìn)制數(shù),即

n = a[k]*p^k + a[k-1]*p^(k-1) + ... + a[1]*p + a[0]m = b[k]*p^k + b[k-1]*p^(k-1) + ... + b[1]*p + b[0]

C(n,m)mod p=[C(a[k],b[k])×C(a[k-1],b[k-1])×...×C(a[0],b[0])]mod p

楊輝三角對應(yīng)著C(n,m)矩陣

if i>=j  c(i,j)!=0

if i<j     c(i,j)=0

對于[C(a[k],b[k])×C(a[k-1],b[k-1])×...×C(a[0],b[0])]mod p!=0的種數(shù),其中由于n確定,所以a[]確定,種數(shù)由b[]決定

c(i,j)必須全不為0,才能被p整除

C(n,m)=n*(n-1)*(n-2)*……*(n-m+1)/(1*2*3*……*m) ,a[]和b[]都小于p,無法被p整除

所以每項(xiàng)都要b[i]>=a[i],0=<i<=k

每一項(xiàng)的個(gè)數(shù)為(a[i]+1),即b=0~a[i];

總數(shù)為(a0+1)(a1+1)......(ak+1);

#include<iostream>#include<cmath>#include<cstring>#include<cstdio>#include<algorithm>#define inf 0x3f3f3f3f#define ll long long#define mod 10000using namespace std;int main(){    int p,n;    int kcase=1;    while(cin>>p>>n)    {        if(p==0&&n==0)            return 0;        int ans=1;        while(n)        {            ans=(ans*(n%p+1))%mod;//原題需要保留4位數(shù)字            n=n/p;        }        printf("Case %d: %04d/n",kcase++,ans);    }    return 0;}


發(fā)表評論 共有條評論
用戶名: 密碼:
驗(yàn)證碼: 匿名發(fā)表
主站蜘蛛池模板: 临澧县| 大埔区| 南和县| 遵义县| 秭归县| 弥渡县| 德钦县| 钟祥市| 沙洋县| 富宁县| 道真| 黔西县| 鲁甸县| 乐至县| 昌平区| 本溪市| 包头市| 改则县| 巨鹿县| 武宁县| 塔河县| 夏津县| 尉氏县| 谷城县| 望城县| 黎川县| 河池市| 手游| 宁强县| 淅川县| 烟台市| 文水县| 锦屏县| 清远市| 拜泉县| 株洲市| 株洲市| 高青县| 长春市| 呼和浩特市| 大渡口区|