国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁(yè) > 學(xué)院 > 開(kāi)發(fā)設(shè)計(jì) > 正文

LintCode Topological Sorting

2019-11-10 20:22:07
字體:
來(lái)源:轉(zhuǎn)載
供稿:網(wǎng)友

description: Given an directed graph, a topological order of the graph nodes is defined as follow:

For each directed edge A -> B in graph, A must before B in the order list. The first node in the order can be any node in the graph with no nodes direct to it. Find any topological order for the given graph.

Notice

You can assume that there is at least one topological order in the graph.

Have you met this question in a real interview? Yes Clarification Learn more about rePResentation of graphs

Example For graph as follow:

picture

The topological order can be:

[0, 1, 2, 3, 4, 5] [0, 2, 3, 1, 5, 4] …

出現(xiàn)了一個(gè)問(wèn)題,hashset是存入和取出是沒(méi)有規(guī)律的,但是這是有向圖的問(wèn)題,因此因該使用arraylist來(lái)進(jìn)行記錄

/** * Definition for Directed graph. * class DirectedGraphNode { * int label; * ArrayList<DirectedGraphNode> neighbors; * DirectedGraphNode(int x) { label = x; neighbors = new ArrayList<DirectedGraphNode>(); } * }; */public class Solution { /** * @param graph: A list of Directed graph node * @return: Any topological order for the given graph. */ public ArrayList<DirectedGraphNode> topSort(ArrayList<DirectedGraphNode> graph) { // write your code here if (graph == null) { return null; } Map<DirectedGraphNode, Integer> map = new HashMap<>(); for (DirectedGraphNode node : graph) { for (DirectedGraphNode root : node.neighbors) { if (map.containsKey(root)) { map.put(root, map.get(root) + 1); } else { map.put(root, 1); } } } Queue<DirectedGraphNode> queue = new LinkedList<>(); ArrayList<DirectedGraphNode> set = new ArrayList<>(); for (DirectedGraphNode node : graph) { if(!map.containsKey(node)) { set.add(node); queue.offer(node); } } while (!queue.isEmpty()) { DirectedGraphNode root = queue.poll(); for (DirectedGraphNode node : root.neighbors) { map.put(node, map.get(node) - 1); if (map.get(node) == 0) { queue.offer(node); set.add(node); } } } return new ArrayList<DirectedGraphNode>(set); }}
發(fā)表評(píng)論 共有條評(píng)論
用戶名: 密碼:
驗(yàn)證碼: 匿名發(fā)表
主站蜘蛛池模板: 灵台县| 潍坊市| 白银市| 洛阳市| 桂东县| 祥云县| 鲜城| 横山县| 商洛市| 台州市| 易门县| 会昌县| 岳西县| 临颍县| 万州区| 衡阳市| 博爱县| 正阳县| 大新县| 大洼县| 应用必备| 安化县| 定结县| 漳州市| 临汾市| 五指山市| 平利县| 泸水县| 丘北县| 深泽县| 方正县| 鲁甸县| 日土县| 乐至县| 桓仁| 吉水县| 九江县| 岑巩县| 隆德县| 三明市| 留坝县|