国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 學院 > 開發設計 > 正文

POJ2253-Frogger(Dijkstra變式)

2019-11-10 17:52:51
字體:
來源:轉載
供稿:網友

Frogger Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 40814 Accepted: 13096 Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists’ sunscreen, he wants to avoid swimming and instead reach her by jumping. Unfortunately Fiona’s stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. To execute a given sequence of jumps, a frog’s jump range obviously must be at least as long as the longest jump occuring in the sequence. The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy’s stone, Fiona’s stone and all other stones in the lake. Your job is to compute the frog distance between Freddy’s and Fiona’s stone. Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) rePResenting the coordinates of stone #i. Stone #1 is Freddy’s stone, stone #2 is Fiona’s stone, the other n-2 stones are unoccupied. There’s a blank line following each test case. Input is terminated by a value of zero (0) for n. Output

For each test case, print a line saying “Scenario #x” and a line saying “Frog Distance = y” where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one. Sample Input

2 0 0 3 4

3 17 4 19 4 18 5

0 Sample Output

Scenario #1 Frog Distance = 5.000

Scenario #2 Frog Distance = 1.414

分析 這里的Frog Distance 是指從起點到終點所有通路中最短的一條邊.(每條通路的最短邊中最短的邊 即通路最短邊的最短邊)

#include<iostream>#include<cstdio>#include<string.h>#include<algorithm>#include<math.h>using namespace std;const int maxn=205;#define INF 0x3f3f3f3fint X[maxn];int Y[maxn];double g[maxn][maxn];double dist[maxn];int vis[maxn];int last[maxn];int fin_cnt;void init(int n){ memset(vis,0,sizeof(vis)); memset(last,-1,sizeof(last)); dist[0]=0; vis[0]=1; fin_cnt=1; for(int i=1;i<n;i++){ dist[i]=g[0][i]; last[i]=0; }}void dijkstra(int n){ int MIN,MIN_IDX; while( fin_cnt < n){ MIN=INF; for(int i=1;i<n; i++){ if(vis[i] ) continue; if(dist[i] < MIN ) MIN=dist[i],MIN_IDX=i; } if(MIN == INF) break; fin_cnt++; vis[MIN_IDX] =1; for(int i=1;i<n;i++){// Dijkstra變式 double mx=max(dist[MIN_IDX],g[MIN_IDX][i]);// 為了形成一條路,必須取max dist[i]=min(dist[i],mx);//在所有能到達的路中選最短的一條邊 } }}int main(){ // freopen("in.txt","r",stdin); ios_base::sync_with_stdio(false); int n; int cas=1; while(cin>>n,n){ for(int i=0;i<n;i++) for(int j=0;j<n;j++) g[i][j]=(i==j? 0:-INF); for(int i=0 ;i <n;i++){ cin>>X[i]>>Y[i]; } for(int i=0;i<n;i++){ for(int j=0;j<n;j++){ if(i==j) continue; g[i][j]=sqrt( pow(X[i]-X[j],2)+pow(Y[i]-Y[j],2) ); } } init(n); dijkstra(n); printf("Scenario #%d/n",cas++); printf("Frog Distance = %.3f/n/n",dist[1]); }}
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 井冈山市| 鹰潭市| 禄丰县| 平陆县| 资溪县| 沿河| 桂平市| 阳春市| 于田县| 天津市| 洪泽县| 德钦县| 珲春市| 会同县| 广东省| 惠安县| 绥滨县| 文化| 安化县| 肇庆市| 闸北区| 饶阳县| 宜宾县| 新郑市| 黑河市| 田阳县| 拉萨市| 华宁县| 青海省| 苏尼特左旗| 苗栗县| 金溪县| 虹口区| 台北县| 新龙县| 黎川县| 九龙坡区| 银川市| 陵川县| 台江县| 凤凰县|