国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁(yè) > 學(xué)院 > 開(kāi)發(fā)設(shè)計(jì) > 正文

1024. Palindromic Number (25)

2019-11-09 20:18:09
字體:
來(lái)源:轉(zhuǎn)載
供稿:網(wǎng)友

A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

Non-palindromic numbers can be paired with palindromic ones via a series of Operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.

Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.

Input Specification:

Each input file contains one test case. Each case consists of two positive numbers N and K, where N (<= 1010) is the initial numer and K (<= 100) is the maximum number of steps. The numbers are separated by a space.

Output Specification:

For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.

Sample Input 1: 67 3 Sample Output 1: 484 2 Sample Input 2: 69 3 Sample Output 2: 1353 3

#include<cstdio>#include<cstring>struct bign{ int d[100]; int len; bign(){ memset(d,0,sizeof(d)); len=0; }}; bign change(char a[]){ bign c; c.len=strlen(a); for(int i=0;i<c.len;i++){ c.d[i]=a[c.len-1-i]-'0'; } return c; } bign add(bign a,bign b){ bign c; int carry=0,i; for(i=0;i<a.len||i<b.len;i++){ int temp=a.d[i]+b.d[i]+carry; c.d[i]=temp%10; carry=temp/10; } if(carry){ c.d[i++]=carry; } c.len=i; return c; } bign reverse(bign a){ for(int i=0;i<a.len/2;i++){ int t=a.d[i]; a.d[i]=a.d[a.len-1-i]; a.d[a.len-1-i]=t; } return a; } bool isPalin(bign b){ for(int i=0;i<b.len/2;i++){ if(b.d[i]!=b.d[b.len-1-i]){ return false; } } return true; } void PRint(bign a){ for(int i=a.len-1;i>=0;i--){ printf("%d",a.d[i]); } printf("/n"); }int main(){ char str[20]; int k; scanf("%s %d",str,&k); bign a=change(str); int step=0; while(step<k&&isPalin(a)==false){ a=add(a,reverse(a)); step++; } print(a); printf("%d/n",step); return 0; }
上一篇:119. Pascal&#39;s Triangle II

下一篇:cpp13.2

發(fā)表評(píng)論 共有條評(píng)論
用戶(hù)名: 密碼:
驗(yàn)證碼: 匿名發(fā)表
主站蜘蛛池模板: 新民市| 偃师市| 武功县| 巩留县| 大渡口区| 施秉县| 城固县| 东乡| 浦江县| 错那县| 定安县| 大丰市| 浪卡子县| 枝江市| 开远市| 万山特区| 开化县| 高尔夫| 迁西县| 勐海县| 盐山县| 福建省| 磐石市| 上犹县| 化州市| 始兴县| 辉南县| 黑水县| 湖南省| 宜丰县| 天气| 九寨沟县| 辽中县| 板桥市| 安陆市| 资兴市| 九龙县| 东宁县| 团风县| 扎鲁特旗| 永宁县|