scipy為python提供了矩陣的運算,還有功能:最優化、線性代數、積分、插值、擬合、特殊函數、快速傅里葉變換、信號和圖像處理、常微分方程的求解等等。安裝scipy之前必須安裝numpy。
例子如下,python3在pycharm中編譯:
from scipy.optimize import fsolve #導入求解方程組的函數def f(x): x1 = x[0] x2 = x[1] return [2*x1 - x2**2 - 1, x1**2 - x2 - 2]result = fsolve(f, [1,1]) #輸入初始值并求解PRint(result)# 數值積分from scipy import integratedef g(x): return (1 - x**2)**0.5pi_2, err = integrate.quad(g, -1, 1)print(pi_2 * 2)
from scipy.optimize import fsolve # 導入求解方程組的函數def f(x): x1 = x[0] x2 = x[1] return [2*x1 - x2**2 - 1, x1**2 - x2 - 2]result = fsolve(f, [1, 1]) # 輸入初始值并求解print(result)# 數值積分from scipy import integratedef g(x): return (1 - x**2)**0.5pi_2, err = integrate.quad(g, -1, 1)print(pi_2 * 2)
新聞熱點
疑難解答