本文主要介紹了高斯濾波器的原理及其實現過程
高斯濾波器是一種線性濾波器,能夠有效的抑制噪聲,平滑圖像。其作用原理和均值濾波器類似,都是取濾波器窗口內的像素的均值作為輸出。其窗口模板的系數和均值濾波器不同,均值濾波器的模板系數都是相同的為1;而高斯濾波器的模板系數,則隨著距離模板中心的增大而系數減小。所以,高斯濾波器相比于均值濾波器對圖像個模糊程度較小。
既然名稱為高斯濾波器,那么其和高斯分布(正態分布)是有一定的關系的。一個二維的高斯函數如下:
這樣,將各個位置的坐標帶入到高斯函數中,得到的值就是模板的系數。 對于窗口模板的大小為
知道模板生成的原理,實現起來也就不困難了
void generateGaussianTemplate(double window[][11], int ksize, double sigma){ static const double pi = 3.1415926; int center = ksize / 2; // 模板的中心位置,也就是坐標的原點 double x2, y2; for (int i = 0; i < ksize; i++) { x2 = pow(i - center, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - center, 2); double g = exp(-(x2 + y2) / (2 * sigma * sigma)); g /= 2 * pi * sigma; window[i][j] = g; } } double k = 1 / window[0][0]; // 將左上角的系數歸一化為1 for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { window[i][j] *= k; } }}需要一個二維數組,存放生成的系數(這里假設模板的最大尺寸不會超過11);第二個參數是模板的大小(不要超過11);第三個參數就比較重要了,是高斯分布的標準差。 生成的過程,首先根據模板的大小,找到模板的中心位置ksize/2。 然后就是遍歷,根據高斯分布的函數,計算模板中每個系數的值。 需要注意的是,最后歸一化的過程,使用模板左上角的系數的倒數作為歸一化的系數(左上角的系數值被歸一化為1),模板中的每個系數都乘以該值(左上角系數的倒數),然后將得到的值取整,就得到了整數型的高斯濾波器模板。 下面截圖生成的是,大小為
對上述解結果取整后得到如下模板:
至于小數形式的生成也比較簡單,去掉歸一化的過程,并且在求解過程后,模板的每個系數要除以所有系數的和。具體代碼如下:
void generateGaussianTemplate(double window[][11], int ksize, double sigma){ static const double pi = 3.1415926; int center = ksize / 2; // 模板的中心位置,也就是坐標的原點 double x2, y2; double sum = 0; for (int i = 0; i < ksize; i++) { x2 = pow(i - center, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - center, 2); double g = exp(-(x2 + y2) / (2 * sigma * sigma)); g /= 2 * pi * sigma; sum += g; window[i][j] = g; } } //double k = 1 / window[0][0]; // 將左上角的系數歸一化為1 for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { window[i][j] /= sum; } }}
通過上述的實現過程,不難發現,高斯濾波器模板的生成最重要的參數就是高斯分布的標準差
來看下一維高斯分布的概率分布密度圖:
橫軸表示可能得取值x,豎軸表示概率分布密度F(x),那么不難理解這樣一個曲線與x軸圍成的圖形面積為1。
在生成高斯模板好,其簡單的實現和其他的空間濾波器沒有區別,具體代碼如下:
void GaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma){ CV_Assert(src.channels() || src.channels() == 3); // 只處理單通道或者三通道圖像 const static double pi = 3.1415926; // 根據窗口大小和sigma生成高斯濾波器模板 // 申請一個二維數組,存放生成的高斯模板矩陣 double **templateMatrix = new double*[ksize]; for (int i = 0; i < ksize; i++) templateMatrix[i] = new double[ksize]; int origin = ksize / 2; // 以模板的中心為原點 double x2, y2; double sum = 0; for (int i = 0; i < ksize; i++) { x2 = pow(i - origin, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - origin, 2); // 高斯函數前的常數可以不用計算,會在歸一化的過程中給消去 double g = exp(-(x2 + y2) / (2 * sigma * sigma)); sum += g; templateMatrix[i][j] = g; } } for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { templateMatrix[i][j] /= sum; cout << templateMatrix[i][j] << " "; } cout << endl; } // 將模板應用到圖像中 int border = ksize / 2; copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT); int channels = dst.channels(); int rows = dst.rows - border; int cols = dst.cols - border; for (int i = border; i < rows; i++) { for (int j = border; j < cols; j++) { double sum[3] = { 0 }; for (int a = -border; a <= border; a++) { for (int b = -border; b <= border; b++) { if (channels == 1) { sum[0] += templateMatrix[border + a][border + b] * dst.at<uchar>(i + a, j + b); } else if (channels == 3) { Vec3b rgb = dst.at<Vec3b>(i + a, j + b); auto k = templateMatrix[border + a][border + b]; sum[0] += k * rgb[0]; sum[1] += k * rgb[1]; sum[2] += k * rgb[2]; } } } for (int k = 0; k < channels; k++) { if (sum[k] < 0) sum[k] = 0; else if (sum[k] > 255) sum[k] = 255; } if (channels == 1) dst.at<uchar>(i, j) = static_cast<uchar>(sum[0]); else if (channels == 3) { Vec3b rgb = { static_cast<uchar>(sum[0]), static_cast<uchar>(sum[1]), static_cast<uchar>(sum[2]) }; dst.at<Vec3b>(i, j) = rgb; } } } // 釋放模板數組 for (int i = 0; i < ksize; i++) delete[] templateMatrix[i]; delete[] templateMatrix;}只處理單通道或者三通道圖像,模板生成后,其濾波(卷積過程)就比較簡單了。不過,這樣的高斯濾波過程,其循環運算次數為
由于高斯函數的可分離性,尺寸較大的高斯濾波器可以分成兩步進行:首先將圖像在水平(豎直)方向與一維高斯函數進行卷積;然后將卷積后的結果在豎直(水平)方向使用相同的一維高斯函數得到的模板進行卷積運算。具體實現代碼如下:
// 分離的計算void separateGaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma){ CV_Assert(src.channels()==1 || src.channels() == 3); // 只處理單通道或者三通道圖像 // 生成一維的高斯濾波模板 double *matrix = new double[ksize]; double sum = 0; int origin = ksize / 2; for (int i = 0; i < ksize; i++) { // 高斯函數前的常數可以不用計算,會在歸一化的過程中給消去 double g = exp(-(i - origin) * (i - origin) / (2 * sigma * sigma)); sum += g; matrix[i] = g; } // 歸一化 for (int i = 0; i < ksize; i++) matrix[i] /= sum; // 將模板應用到圖像中 int border = ksize / 2; copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT); int channels = dst.channels(); int rows = dst.rows - border; int cols = dst.cols - border; // 水平方向 for (int i = border; i < rows; i++) { for (int j = border; j < cols; j++) { double sum[3] = { 0 }; for (int k = -border; k <= border; k++) { if (channels == 1) { sum[0] += matrix[border + k] * dst.at<uchar>(i, j + k); // 行不變,列變化;先做水平方向的卷積 } else if (channels == 3) { Vec3b rgb = dst.at<Vec3b>(i, j + k); sum[0] += matrix[border + k] * rgb[0]; sum[1] += matrix[border + k] * rgb[1]; sum[2] += matrix[border + k] * rgb[2]; } } for (int k = 0; k < channels; k++) { if (sum[k] < 0) sum[k] = 0; else if (sum[k] > 255) sum[k] = 255; } if (channels == 1) dst.at<uchar>(i, j) = static_cast<uchar>(sum[0]); else if (channels == 3) { Vec3b rgb = { static_cast<uchar>(sum[0]), static_cast<uchar>(sum[1]), static_cast<uchar>(sum[2]) }; dst.at<Vec3b>(i, j) = rgb; } } } // 豎直方向 for (int i = border; i < rows; i++) { for (int j = border; j < cols; j++) { double sum[3] = { 0 }; for (int k = -border; k <= border; k++) { if (channels == 1) { sum[0] += matrix[border + k] * dst.at<uchar>(i + k, j); // 列不變,行變化;豎直方向的卷積 } else if (channels == 3) { Vec3b rgb = dst.at<Vec3b>(i + k, j); sum[0] += matrix[border + k] * rgb[0]; sum[1] += matrix[border + k] * rgb[1]; sum[2] += matrix[border + k] * rgb[2]; } } for (int k = 0; k < channels; k++) { if (sum[k] < 0) sum[k] = 0; else if (sum[k] > 255) sum[k] = 255; } if (channels == 1) dst.at<uchar>(i, j) = static_cast<uchar>(sum[0]); else if (channels == 3) { Vec3b rgb = { static_cast<uchar>(sum[0]), static_cast<uchar>(sum[1]), static_cast<uchar>(sum[2]) }; dst.at<Vec3b>(i, j) = rgb; } } } delete[] matrix;}代碼沒有重構較長,不過其實現原理是比較簡單的。首先得到一維高斯函數的模板,在卷積(濾波)的過程中,保持行不變,列變化,在水平方向上做卷積運算;接著在上述得到的結果上,保持列不邊,行變化,在豎直方向上做卷積運算。 這樣分解開來,算法的時間復雜度為
在OpenCV也有對高斯濾波器的封裝GaussianBlur,其聲明如下:
二維高斯函數的標準差在x和y方向上應該分別有一個標準差,在上面的代碼中一直設其在x和y方向的標準是相等的,在OpenCV中的高斯濾波器中,可以在x和y方向上設置不同的標準差。 下圖是自己實現的高斯濾波器和OpenCV中的GaussianBlur的結果對比
上圖是
高斯濾波器是一種線性平滑濾波器,其濾波器的模板是對二維高斯函數離散得到。由于高斯模板的中心值最大,四周逐漸減小,其濾波后的結果相對于均值濾波器來說更好。 高斯濾波器最重要的參數就是高斯分布的標準差
新聞熱點
疑難解答