国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 學院 > 開發設計 > 正文

CodeForces - 744A (并查集)

2019-11-08 18:23:29
字體:
來源:轉載
供稿:網友

Hongcow is ruler of the world. As ruler of the world, he wants to make it easier for people to travel by road within their own countries.

The world can be modeled as an undirected graph with n nodes and m edges. k of the nodes are home to the governments of the k countries that make up the world.

There is at most one edge connecting any two nodes and no edge connects a node to itself. Furthermore, for any two nodes corresponding to governments, there is no path between those two nodes. Any graph that satisfies all of these conditions is stable.

Hongcow wants to add as many edges as possible to the graph while keeping it stable. Determine the maximum number of edges Hongcow can add.

Input The first line of input will contain three integers n, m and k (1?≤?n?≤?1?000, 0?≤?m?≤?100?000, 1?≤?k?≤?n) — the number of vertices and edges in the graph, and the number of vertices that are homes of the government.

The next line of input will contain k integers c1,?c2,?…,?ck (1?≤?ci?≤?n). These integers will be pairwise distinct and denote the nodes that are home to the governments in this world.

The following m lines of input will contain two integers ui and vi (1?≤?ui,?vi?≤?n). This denotes an undirected edge between nodes ui and vi.

It is guaranteed that the graph described by the input is stable.

Output Output a single integer, the maximum number of edges Hongcow can add to the graph while keeping it stable.

Example Input 4 1 2 1 3 1 2 Output 2 Input 3 3 1 2 1 2 1 3 2 3 Output 0 Note For the first sample test, the graph looks like this:

Vertices 1 and 3 are special. The optimal solution is to connect vertex 4 to vertices 1 and 2. This adds a total of 2 edges. We cannot add any more edges, since vertices 1 and 3 cannot have any path between them. For the second sample test, the graph looks like this:

We cannot add any more edges to this graph. Note that we are not allowed to add self-loops, and the graph must be simple.


給出點和已有的邊,問最多能添加的邊為多少,是政府的點相互不能連通,最優方法是將所有不含政府點的連通塊連到包含點最多的包含政府點連通塊上,最終每個點數量為n連通塊的最多邊數為(n*n-1)/2,做法是先建立起并查集,處理出所有非政府連通塊的點的數量x和以及每一個包含政府的連通塊,然后把x加入點集最大的包含政府連通塊中,然后對每一個包含政府連通塊求答案,最終減去已有邊數。

#include<iostream>#include<stdio.h>#include<algorithm>#include<vector>using namespace std;int n, m, k;bool gov[1005];int f[1005];int total[1005];vector<int> v;int F(int x){ return f[x] == x ? x : (f[x] = F(f[x]));}int main(){ scanf("%d%d%d", &n, &m, &k); int num, a, b; for (int i = 0; i < k; i++){ scanf("%d", &num); gov[num] = 1; } for (int i = 1; i <= n; i++){ f[i] = i; total[i] = 1; } for (int i = 0; i < m; i++){ scanf("%d%d", &a, &b); if (gov[F(a)]){ f[F(b)] = F(a); } else {f[F(a)] = F(b); } } int nogovnum = 0; for (int i = 1; i <= n; i++){ if (F(i) != i){ total[F(i)]++; } } for (int i = 1; i <= n; i++){ if (f[i] == i){ if (gov[i])v.push_back(total[i]); else nogovnum += total[i]; } } int ans = 0; sort(v.begin(), v.end()); int len = v.size(); v[len - 1] += nogovnum; for (int i = 0; i < len; i++){ int QQ = v[i]; ans += (qq*(qq - 1)) / 2; } ans -= m;
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 磐石市| 乌兰浩特市| 桂林市| 马公市| 南川市| 都安| 江达县| 行唐县| 万源市| 珠海市| 浦江县| 英吉沙县| 阜南县| 南和县| 松滋市| 罗源县| 玉树县| 广昌县| 慈利县| 房产| 武夷山市| 灌阳县| 即墨市| 竹溪县| 驻马店市| 定南县| 灵璧县| 井陉县| 凭祥市| 西乌珠穆沁旗| 长沙市| 佳木斯市| 时尚| 泰宁县| 深圳市| 奉节县| 修武县| 衡阳市| 涿鹿县| 清镇市| 大余县|