国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 學院 > 開發設計 > 正文

152. Maximum Product Subarray Add to List --- 注意

2019-11-08 02:57:01
字體:
來源:轉載
供稿:網友

Find the contiguous subarray within an array (containing at least one number) which has the largest PRoduct.

For example, given the array [2,3,-2,4], the contiguous subarray [2,3] has the largest product = 6. 這道題屬于動態規劃的題型,之前常見的是Maximum SubArray,現在是Product Subarray,不過思想是一致的。 當然不用動態規劃,常規方法也是可以做的,但是時間復雜度過高(TimeOut),像下面這種形式:

// 思路:用兩個指針來指向字數組的頭尾int maxProduct(int A[], int n){ assert(n > 0); int subArrayProduct = -32768; for (int i = 0; i != n; ++ i) { int nTempProduct = 1; for (int j = i; j != n; ++ j) { if (j == i) nTempProduct = A[i]; else nTempProduct *= A[j]; if (nTempProduct >= subArrayProduct) subArrayProduct = nTempProduct; } } return subArrayProduct;}

用動態規劃的方法,就是要找到其轉移方程式,也叫動態規劃的遞推式,動態規劃的解法無非是維護兩個變量,局部最優和全局最優,我們先來看Maximum SubArray的情況,如果遇到負數,相加之后的值肯定比原值小,但可能比當前值大,也可能小,所以,對于相加的情況,只要能夠處理局部最大和全局最大之間的關系即可,對此,寫出轉移方程式如下: local[i + 1] = Max(local[i] + A[i], A[i]);

global[i + 1] = Max(local[i + 1], global[i]);

對應代碼如下:

int maxSubArray(int A[], int n){ assert(n > 0); if (n <= 0) return 0; int global = A[0]; int local = A[0]; for(int i = 1; i != n; ++ i) { local = MAX(A[i], local + A[i]); global = MAX(local, global); } return global;}

而對于Product Subarray,要考慮到一種特殊情況,即負數和負數相乘:如果前面得到一個較小的負數,和后面一個較大的負數相乘,得到的反而是一個較大的數,如{2,-3,-7},所以,我們在處理乘法的時候,除了需要維護一個局部最大值,同時還要維護一個局部最小值,由此,可以寫出如下的轉移方程式:

max_copy[i] = max_local[i] max_local[i + 1] = Max(Max(max_local[i] * A[i], A[i]), min_local * A[i])

min_local[i + 1] = Min(Min(max_copy[i] * A[i], A[i]), min_local * A[i])

對應代碼如下:

#define MAX(x,y) ((x)>(y)?(x):(y))#define MIN(x,y) ((x)<(y)?(x):(y))int maxProduct1(int A[], int n){ assert(n > 0); if (n <= 0) return 0; if (n == 1) return A[0]; int max_local = A[0]; int min_local = A[0]; int global = A[0]; for (int i = 1; i != n; ++ i) { int max_copy = max_local; max_local = MAX(MAX(A[i] * max_local, A[i]), A[i] * min_local); min_local = MIN(MIN(A[i] * max_copy, A[i]), A[i] * min_local); global = MAX(global, max_local); } return global;}

更加優化的代碼,空間復雜度降低為O(1)的代碼:

int maxProduct(vector<int>& nums) { int len = nums.size(); int maxherepre = nums[0]; int minherepre = nums[0]; int maxsofar = nums[0]; int maxhere, minhere; for(int i = 1; i < len; i++){ maxhere = max(max(maxherepre*nums[i],minherepre*nums[i]),nums[i]); minhere = min(min(maxherepre*nums[i],minherepre*nums[i]),nums[i]); maxsofar= max(maxsofar,maxhere); maxherepre = maxhere; minherepre = minhere; } return maxsofar; }

總結:動態規劃題最核心的步驟就是要寫出其狀態轉移方程,但是如何寫出正確的方程式,需要我們不斷的實踐并總結才能達到。


發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 定结县| 五台县| 文山县| 阿巴嘎旗| 屯昌县| 南昌县| 綦江县| 高阳县| 高尔夫| 贺州市| 江孜县| 尤溪县| 大同县| 绥阳县| 囊谦县| 汾西县| 合江县| 玉屏| 包头市| 青岛市| 宝兴县| 宽城| 南皮县| 嫩江县| 莲花县| 济南市| 南京市| 康平县| 肃南| 岗巴县| 灌南县| 通渭县| 马鞍山市| 高阳县| 南昌市| 泌阳县| 丹凤县| 咸阳市| 马龙县| 临桂县| 竹山县|