国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 學院 > 開發設計 > 正文

最短路徑—Dijkstra算法和Floyd算法

2019-11-08 02:24:37
字體:
來源:轉載
供稿:網友

最短路徑—Dijkstra算法和Floyd算法

 

注意:以下代碼 只是描述思路,沒有測試過!!

 

Dijkstra算法

1.定義概覽

Dijkstra(迪杰斯特拉)算法是典型的單源最短路徑算法,用于計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra算法是很有代表性的最短路徑算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。注意該算法要求圖中不存在負權邊。

問題描述:在無向圖 G=(V,E) 中,假設每條邊 E[i] 的長度為 w[i],找到由頂點 V0 到其余各點的最短路徑。(單源最短路徑)

 

2.算法描述

1)算法思想:設G=(V,E)是一個帶權有向圖,把圖中頂點集合V分成兩組,第一組為已求出最短路徑的頂點集合(用S表示,初始時S中只有一個源點,以后每求得一條最短路徑 , 就將加入到集合S中,直到全部頂點都加入到S中,算法就結束了),第二組為其余未確定最短路徑的頂點集合(用U表示),按最短路徑長度的遞增次序依次把第二組的頂點加入S中。在加入的過程中,總保持從源點v到S中各頂點的最短路徑長度不大于從源點v到U中任何頂點的最短路徑長度。此外,每個頂點對應一個距離,S中的頂點的距離就是從v到此頂點的最短路徑長度,U中的頂點的距離,是從v到此頂點只包括S中的頂點為中間頂點的當前最短路徑長度。

2)算法步驟:

a.初始時,S只包含源點,即S={v},v的距離為0。U包含除v外的其他頂點,即:U={其余頂點},若v與U中頂點u有邊,則<u,v>正常有權值,若u不是v的出邊鄰接點,則<u,v>權值為∞。

b.從U中選取一個距離v最小的頂點k,把k,加入S中(該選定的距離就是v到k的最短路徑長度)。

c.以k為新考慮的中間點,修改U中各頂點的距離;若從源點v到頂點u的距離(經過頂點k)比原來距離(不經過頂點k)短,則修改頂點u的距離值,修改后的距離值的頂點k的距離加上邊上的權。

d.重復步驟b和c直到所有頂點都包含在S中。

 

執行動畫過程如下圖

 

3.算法代碼實現:

 

復制代碼
const int  MAXINT = 32767;const int MAXNUM = 10;int dist[MAXNUM];int PRev[MAXNUM];int A[MAXUNM][MAXNUM];void Dijkstra(int v0){    bool S[MAXNUM];                                  // 判斷是否已存入該點到S集合中      int n=MAXNUM;    for(int i=1; i<=n; ++i)    {        dist[i] = A[v0][i];        S[i] = false;                                // 初始都未用過該點        if(dist[i] == MAXINT)                  prev[i] = -1;        else               prev[i] = v0;     }     dist[v0] = 0;     S[v0] = true;       for(int i=2; i<=n; i++)    {         int mindist = MAXINT;         int u = v0;                               // 找出當前未使用的點j的dist[j]最小值         for(int j=1; j<=n; ++j)            if((!S[j]) && dist[j]<mindist)            {                  u = j;                             // u保存當前鄰接點中距離最小的點的號碼                   mindist = dist[j];            }         S[u] = true;          for(int j=1; j<=n; j++)             if((!S[j]) && A[u][j]<MAXINT)             {                 if(dist[u] + A[u][j] < dist[j])     //在通過新加入的u點路徑找到離v0點更短的路徑                   {                     dist[j] = dist[u] + A[u][j];    //更新dist                      prev[j] = u;                    //記錄前驅頂點                   }              }     }}復制代碼

 

4.算法實例

先給出一個無向圖

用Dijkstra算法找出以A為起點的單源最短路徑步驟如下

 

Floyd算法

1.定義概覽

Floyd-Warshall算法(Floyd-Warshall algorithm)是解決任意兩點間的最短路徑的一種算法,可以正確處理有向圖或負權的最短路徑問題,同時也被用于計算有向圖的傳遞閉包。Floyd-Warshall算法的時間復雜度為O(N3),空間復雜度為O(N2)。

 

2.算法描述

1)算法思想原理:

     Floyd算法是一個經典的動態規劃算法。用通俗的語言來描述的話,首先我們的目標是尋找從點i到點j的最短路徑。從動態規劃的角度看問題,我們需要為這個目標重新做一個詮釋(這個詮釋正是動態規劃最富創造力的精華所在)

      從任意節點i到任意節點j的最短路徑不外乎2種可能,1是直接從i到j,2是從i經過若干個節點k到j。所以,我們假設Dis(i,j)為節點u到節點v的最短路徑的距離,對于每一個節點k,我們檢查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,證明從i到k再到j的路徑比i直接到j的路徑短,我們便設置Dis(i,j) = Dis(i,k) + Dis(k,j),這樣一來,當我們遍歷完所有節點k,Dis(i,j)中記錄的便是i到j的最短路徑的距離。

2).算法描述:

a.從任意一條單邊路徑開始。所有兩點之間的距離是邊的權,如果兩點之間沒有邊相連,則權為無窮大。   

b.對于每一對頂點 u 和 v,看看是否存在一個頂點 w 使得從 u 到 w 再到 v 比己知的路徑更短。如果是更新它。

3).Floyd算法過程矩陣的計算----十字交叉法

方法:兩條線,從左上角開始計算一直到右下角 如下所示

給出矩陣,其中矩陣A是鄰接矩陣,而矩陣Path記錄u,v兩點之間最短路徑所必須經過的點

相應計算方法如下:

最后A3即為所求結果

 

3.算法代碼實現

復制代碼
typedef struct          {            char vertex[VertexNum];                                //頂點表             int edges[VertexNum][VertexNum];                       //鄰接矩陣,可看做邊表             int n,e;                                               //圖中當前的頂點數和邊數         }MGraph; void Floyd(MGraph g){   int A[MAXV][MAXV];   int path[MAXV][MAXV];   int i,j,k,n=g.n;   for(i=0;i<n;i++)      for(j=0;j<n;j++)      {                A[i][j]=g.edges[i][j];            path[i][j]=-1;       }   for(k=0;k<n;k++)   {         for(i=0;i<n;i++)           for(j=0;j<n;j++)               if(A[i][j]>(A[i][k]+A[k][j]))               {                     A[i][j]=A[i][k]+A[k][j];                     path[i][j]=k;                }      } } 復制代碼

算法時間復雜度:O(n3)


上一篇:SpringMvc常用注解

下一篇:內存分配

發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 米易县| 西充县| 沐川县| 汾西县| 奎屯市| 开鲁县| 内黄县| 陆河县| 友谊县| 涞源县| 耿马| 酉阳| 嘉祥县| 托克托县| 佛坪县| 海门市| 甘孜县| 北川| 南安市| 和顺县| 克什克腾旗| 萨迦县| 平和县| 皋兰县| 华蓥市| 韶关市| 休宁县| 民乐县| 宜黄县| 富裕县| 罗平县| 江都市| 云林县| 太仓市| 郓城县| 承德县| 南开区| 太原市| 开远市| 郓城县| 广河县|