原文地址:
http://www.cnblogs.com/skywang12345/p/3711516.html
Dijkstra算法
1.定義概覽
Dijkstra(迪杰斯特拉)算法是典型的單源最短路徑算法,用于計算一個節點到其他所有節點的最短路徑。主要特點是以起始點為中心向外層層擴展,直到擴展到終點為止。Dijkstra算法是很有代表性的最短路徑算法,在很多專業課程中都作為基本內容有詳細的介紹,如數據結構,圖論,運籌學等等。注意該算法要求圖中不存在負權邊。
問題描述:在無向圖 G=(V,E) 中,假設每條邊 E[i] 的長度為 w[i],找到由頂點 V0 到其余各點的最短路徑。(單源最短路徑)
2.算法描述
1)算法思想:設G=(V,E)是一個帶權有向圖,把圖中頂點集合V分成兩組,第一組為已求出最短路徑的頂點集合(用S表示,初始時S中只有一個源點,以后每求得一條最短路徑 , 就將加入到集合S中,直到全部頂點都加入到S中,算法就結束了),第二組為其余未確定最短路徑的頂點集合(用U表示),按最短路徑長度的遞增次序依次把第二組的頂點加入S中。在加入的過程中,總保持從源點v到S中各頂點的最短路徑長度不大于從源點v到U中任何頂點的最短路徑長度。此外,每個頂點對應一個距離,S中的頂點的距離就是從v到此頂點的最短路徑長度,U中的頂點的距離,是從v到此頂點只包括S中的頂點為中間頂點的當前最短路徑長度。
(1) 初始時,S只包含起點s;U包含除s外的其他頂點,且U中頂點的距離為"起點s到該頂點的距離"[例如,U中頂點v的距離為(s,v)的長度,然后s和v不相鄰,則v的距離為∞]。
(2) 從U中選出"距離最短的頂點k",并將頂點k加入到S中;同時,從U中移除頂點k。
(3) 更新U中各個頂點到起點s的距離。之所以更新U中頂點的距離,是由于上一步中確定了k是求出最短路徑的頂點,從而可以利用k來更新其它頂點的距離;例如,(s,v)的距離可能大于(s,k)+(k,v)的距離。
(4) 重復步驟(2)和(3),直到遍歷完所有頂點。

以上圖G4為例,來對迪杰斯特拉進行算法演示(以第4個頂點D為起點)。

初始狀態:S是已計算出最短路徑的頂點集合,U是未計算除最短路徑的頂點的集合!第1步:將頂點D加入到S中。 此時,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起點D的距離是3。
第2步:將頂點C加入到S中。 上一步操作之后,U中頂點C到起點D的距離最短;因此,將C加入到S中,同時更新U中頂點的距離。以頂點F為例,之前F到D的距離為∞;但是將C加入到S之后,F到D的距離為9=(F,C)+(C,D)。 此時,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。
第3步:將頂點E加入到S中。 上一步操作之后,U中頂點E到起點D的距離最短;因此,將E加入到S中,同時更新U中頂點的距離。還是以頂點F為例,之前F到D的距離為9;但是將E加入到S之后,F到D的距離為6=(F,E)+(E,D)。 此時,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。
第4步:將頂點F加入到S中。 此時,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。
第5步:將頂點G加入到S中。 此時,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。
第6步:將頂點B加入到S中。 此時,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。
第7步:將頂點A加入到S中。 此時,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。
此時,起點D到各個頂點的最短距離就計算出來了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。
新聞熱點
疑難解答