国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 學院 > 開發設計 > 正文

CS231n Assignment2--Q3

2019-11-06 06:12:28
字體:
來源:轉載
供稿:網友

Q3: Dropout

Dropout.ipynb

X_val: (1000, 3, 32, 32) X_train: (49000, 3, 32, 32) X_test: (1000, 3, 32, 32) y_val: (1000,) y_train: (49000,) y_test: (1000,)

Dropout forward pass

Running tests with p = 0.3 Mean of input: 10.0029862212 Mean of train-time output: 10.0180516238 Mean of test-time output: 10.0029862212 Fraction of train-time output set to zero: 0.699532 Fraction of test-time output set to zero: 0.0

Running tests with p = 0.6 Mean of input: 10.0029862212 Mean of train-time output: 10.0146605666 Mean of test-time output: 10.0029862212 Fraction of train-time output set to zero: 0.399216 Fraction of test-time output set to zero: 0.0

Running tests with p = 0.75 Mean of input: 10.0029862212 Mean of train-time output: 10.0041925077 Mean of test-time output: 10.0029862212 Fraction of train-time output set to zero: 0.249896 Fraction of test-time output set to zero: 0.0

Dropout backward pass

dx relative error: 5.44561222172e-11

Fully-connected nets with Dropout

Running check with dropout = 0 Initial loss: 2.31027832193 W1 relative error: 3.70e-06 W2 relative error: 8.95e-06 W3 relative error: 3.00e-08 b1 relative error: 2.10e-08 b2 relative error: 1.83e-09 b3 relative error: 9.60e-11

Running check with dropout = 0.25 Initial loss: 2.2995556198 W1 relative error: 2.61e-07 W2 relative error: 1.89e-09 W3 relative error: 4.52e-09 b1 relative error: 3.71e-10 b2 relative error: 4.50e-10 b3 relative error: 1.34e-10

Running check with dropout = 0.5 Initial loss: 2.30021447314 W1 relative error: 5.59e-07 W2 relative error: 4.28e-08 W3 relative error: 9.85e-08 b1 relative error: 2.54e-09 b2 relative error: 4.08e-09 b3 relative error: 6.62e-11

Regularization experiment

0 (Iteration 1 / 125) loss: 9.163244 (Epoch 0 / 25) train acc: 0.216000; val_acc: 0.192000 (Epoch 1 / 25) train acc: 0.236000; val_acc: 0.146000 (Epoch 2 / 25) train acc: 0.344000; val_acc: 0.209000 (Epoch 3 / 25) train acc: 0.360000; val_acc: 0.234000 (Epoch 4 / 25) train acc: 0.480000; val_acc: 0.248000 (Epoch 5 / 25) train acc: 0.570000; val_acc: 0.256000 (Epoch 6 / 25) train acc: 0.628000; val_acc: 0.281000 (Epoch 7 / 25) train acc: 0.682000; val_acc: 0.271000 (Epoch 8 / 25) train acc: 0.724000; val_acc: 0.267000 (Epoch 9 / 25) train acc: 0.800000; val_acc: 0.267000 (Epoch 10 / 25) train acc: 0.814000; val_acc: 0.273000 (Epoch 11 / 25) train acc: 0.836000; val_acc: 0.274000 (Epoch 12 / 25) train acc: 0.898000; val_acc: 0.296000 (Epoch 13 / 25) train acc: 0.908000; val_acc: 0.274000 (Epoch 14 / 25) train acc: 0.900000; val_acc: 0.280000 (Epoch 15 / 25) train acc: 0.956000; val_acc: 0.286000 (Epoch 16 / 25) train acc: 0.948000; val_acc: 0.264000 (Epoch 17 / 25) train acc: 0.962000; val_acc: 0.283000 (Epoch 18 / 25) train acc: 0.976000; val_acc: 0.287000 (Epoch 19 / 25) train acc: 0.984000; val_acc: 0.288000 (Epoch 20 / 25) train acc: 0.966000; val_acc: 0.272000 (Iteration 101 / 125) loss: 0.219312 (Epoch 21 / 25) train acc: 0.972000; val_acc: 0.298000 (Epoch 22 / 25) train acc: 0.976000; val_acc: 0.289000 (Epoch 23 / 25) train acc: 0.994000; val_acc: 0.283000 (Epoch 24 / 25) train acc: 0.994000; val_acc: 0.289000 (Epoch 25 / 25) train acc: 0.982000; val_acc: 0.287000 0.75 (Iteration 1 / 125) loss: 10.888994 (Epoch 0 / 25) train acc: 0.224000; val_acc: 0.202000 (Epoch 1 / 25) train acc: 0.300000; val_acc: 0.231000 (Epoch 2 / 25) train acc: 0.314000; val_acc: 0.220000 (Epoch 3 / 25) train acc: 0.404000; val_acc: 0.259000 (Epoch 4 / 25) train acc: 0.408000; val_acc: 0.217000 (Epoch 5 / 25) train acc: 0.478000; val_acc: 0.235000 (Epoch 6 / 25) train acc: 0.586000; val_acc: 0.275000 (Epoch 7 / 25) train acc: 0.634000; val_acc: 0.254000 (Epoch 8 / 25) train acc: 0.680000; val_acc: 0.300000 (Epoch 9 / 25) train acc: 0.748000; val_acc: 0.303000 (Epoch 10 / 25) train acc: 0.796000; val_acc: 0.268000 (Epoch 11 / 25) train acc: 0.870000; val_acc: 0.282000 (Epoch 12 / 25) train acc: 0.856000; val_acc: 0.285000 (Epoch 13 / 25) train acc: 0.880000; val_acc: 0.282000 (Epoch 14 / 25) train acc: 0.918000; val_acc: 0.315000 (Epoch 15 / 25) train acc: 0.906000; val_acc: 0.303000 (Epoch 16 / 25) train acc: 0.932000; val_acc: 0.290000 (Epoch 17 / 25) train acc: 0.942000; val_acc: 0.311000 (Epoch 18 / 25) train acc: 0.966000; val_acc: 0.296000 (Epoch 19 / 25) train acc: 0.938000; val_acc: 0.307000 (Epoch 20 / 25) train acc: 0.966000; val_acc: 0.313000 (Iteration 101 / 125) loss: 2.588185 (Epoch 21 / 25) train acc: 0.964000; val_acc: 0.297000 (Epoch 22 / 25) train acc: 0.968000; val_acc: 0.296000 (Epoch 23 / 25) train acc: 0.984000; val_acc: 0.337000 (Epoch 24 / 25) train acc: 0.984000; val_acc: 0.323000 (Epoch 25 / 25) train acc: 0.968000; val_acc: 0.317000

這里寫圖片描述

Question

Explain what you see in this experiment. What does it suggest about dropout?

Answer

When using 0.75 dropout, we can get higher val accuracy since the dropout can conquer the overfitting PRoblem.


發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 科尔| 南丹县| 德惠市| 斗六市| 定南县| 无棣县| 阿图什市| 巴南区| 监利县| 昭苏县| 鄂州市| 惠东县| 绥宁县| 浦北县| 江陵县| 锡林郭勒盟| 香格里拉县| 凌海市| 佛教| 洛川县| 洱源县| 岐山县| 天等县| 闵行区| 阿勒泰市| 宿松县| 甘德县| 禹州市| 华宁县| 铁岭市| 黄陵县| 石阡县| 庐江县| 尼玛县| 吴桥县| 阳山县| 阿拉善盟| 沭阳县| 长春市| 宁安市| 灵武市|