Study on algorithms of optimal capacitor placement and switching PRoblem in distribution network
FANG Xing 1, GUO Zhi-zhong1,2
(1、Dept. of Electrical Engineering , Harbin Institute of Technology, Harbin 150001, China;
2、Beijing Xuji Electric Co., Ltd., Beijing 100085,China )
Abstract:Capacitor optimal placement and switching plays an important role in distribution network optimization. The state of the art in optimal capacitor placement and switching problem in distribution network is reviewed. Summarizing the existing approaches to solve capacitor switching problem is particularly emphasized. The feathers and main problems of the corresponding algorithms are discussed for further research and development in this field.
Key Words: distribution network;capacitor;allocation;switching;algorithms
Teng J H在文[14,15]中分別考慮在不平衡和平衡配電系統中如何利用常用的線性規劃技術實現電容器的實時優化控制。
3) 二次規劃
Wang J C[16]考慮不對稱配電網中電容器優化問題,建立其數學模型,把問題分解成兩個子問題:電容器配置問題和實時投切問題,并用二次整數規劃法求解。
4) 動態規劃
Hsu Y Y等[17]提出了一種確定未來24小時饋線電容器最優投切策略的動態規劃方法,其目標是在保證電壓質量的同時使饋線線損最小,約束條件中包括對電容器投切次數的限制。如果把電容器的投切狀態作為狀態變量,當電容器較多時,動態規劃會有維數災。為克服采用動態規劃可能出現的維數災,作者將階段n時的狀態變量定義為從階段0到n時的電容器總投切次數,此法顯著降低了動態規劃法在線計算的維數,加快了收斂速度,但計算量還是隨電容器呈倍率增長,當電容器較多時,仍不理想,不足之處還在于將負荷當成恒電流處理。
ANN方法的最大特點是可以通過樣本的訓練將輸入與輸出之間的非線性關系存儲于神經元的權值中。Santoso N I [18]用兩級ANN實現電容器投切的實時控制。第一級ANN以母線的測量值(功率和電壓)和電容器當前檔位值為輸入來預測負荷水平,第二級ANN根據負荷水平確定控制策略。Das等人針對傳統優化方法費時不適合于在線應用問題,提出一種基于人工神經網絡的方法;研究結果表明該方法比傳統優化方法的計算速度快100倍以上[19]。
1990年,Chiang H D[20]用SA算法確定電容器的安裝位置、類型、容量以及不同負荷水平下電容器的投切方案,考慮了電容器的實際情況、負荷約束以及各種負荷水平下的運行約束,并以69節點系統為例進行了計算。隨后作者將電容器優化問題從三相對稱系統推廣到不對稱系統[21],和上一篇文獻不同之處還在于考慮了負荷的電壓靜特性以及電容器更換問題,仍然用模擬退火法求解。王守相等[22]也應用模擬退火算法解決配電電容器三相分相投切問題,算法考慮了配電系統實際的三相不平衡狀況和系統日負荷變化曲線以及電容器的實際操作次數約束。
Miu K N和Chiang H D [28]研究了GA在三相不平衡配電網電容器優化配置及控制問題中的應用,構造了兩級 優化模型。一級優化用遺傳算法確定一個可行解空間,二級優化采用基于靈敏度分析的啟發式算法,用上一級所得到的可行解空間作為搜索的初值繼續尋優。該方法花費的時間比單純使用GA要少,但解的精度有所降低。
1. Capacitor Subcommittee of the IEEE Transmission and Distribution Committee. Bibliography on Power Capacitors 1975-1980[J]. IEEE Trans. on Power Apparatus and Systems, 1983, 102(7):2331-2334.
2. IEEE VAR Management Working Group of the IEEE System Control Subcommittee. Bibliography on Reactive Power and Voltage Control[J]. IEEE Trans. on Power Systems, 1987,2(2): 361-370.
3. Bortignon G A, El-Hawary M E. Review of Capacitor Placement Techniques for Loss Reduction in Primary Feeders on Distribution Systems[C]. Canadian Conference on Electrical and Computer Engineering, 1995, 2:684-687.
4. Carlisle J C, El-Keib A A, Boyd D et al. A Review of Capacitor Placement Techniques on Distribution Feeders[C]. Proceedings of the 29th Symposium on System Theory. Tennessee. 1997: 359-365.
5. Carlisle J C, El-Keib A A, Boyd D et al. Reactive Power Compensation on Distribution Feeders[C]. Proceedings of the 29th Symposium on System Theory. Tennessee. 1997: 366-371.
6. Ng H N, Salama M M A, Chikhani A Y. Classification of Capacitor Allocation Techniques[J]. IEEE Trans. on Power Delivery, 2000, 15(1): 387-392.
7. Grainger J J, Lee S H, and EI-Kib A A. Design of a Real-Time Switching Control Scheme for Capacitive Compensation of Distribution Feeders[J]. IEEE Trans. on Power Apparatus and Systems, 1982, 101(8): 2420-2428.
8. Grainger J J, Civanlar S, and Lee S H. Optimal Design and control scheme for Continuous Capacitive Compensation of Distribution Feeders[J]. IEEE Trans. on Power Apparatus and Systems, 1983, 102(10): 3271-3278.
9. Grainger J J, Civanlar S, Clinard K N et al. Discrete-Tap Control Scheme for Capacitive Compensation of Distribution Feeders[J]. IEEE Trans. on Power Apparatus and Systems, 1984, 103(8): 2098-2107.
10. Grainger J J, Civanlar S, Clinard K N et al. Optimal Voltage Dependent Continuous Time Control of Reactive Power on Primary Distribution Feeders[J]. IEEE Trans. on Power Apparatus and Systems, 1984, 103(9): 2714-2723.
11. Civanlar S, Grainger J J. Volt/Var Control on Distribution Systems with Lateral Branches Using Shunt Capacitors and Voltage Regulators PartⅠ: the Overall Problem; PartⅡ: the Solution Problem ; Part Ⅲ: the Numerical Problem [J]. IEEE Trans on Power Apparatus and Systems. 1985, 104(11): 3278-3297.
12. 鄧佑滿,張伯明,相年德. 配電網絡電容器實時優化投切的逐次線性整數規劃法[J]. 中國電機工程學報, 1995,15(6):375-383.DENG You-man, ZHANG Bo-ming, XIANG Nian-de. A successive linear integer programming method for capacitor switching on distribution systems[J]. Proceedings of the CSEE, 1995,15(6):375-383.
13. Deng Y M, Ren X J. Optimal Capacitor Switching with Fuzzy Load Model for Radial Distribution Systems[J]. IEE Proc-Gener. Transm. Distrib., 2003,150(2): 190-194.
14. Teng J H. A Linear Model for Real-Time Capacitor Control in Unbalanced Distribution System[C]. IEEE 2000 Power Engineering Society Summer Meeting, 4: 2391-2396.
15. Teng J H, Chang C Y. A Network-Topology-Based Capacitor Control Algorithm for Distribution Systems[C]. IEEE/PES 2002 Transmission and Distribution Conference and Exhibition,2: 1158-1162
16. Wang J C, Chiang H D, Miu K N et al. Capacitor Placement and Real Time Control in Large Scale Unbalanced Distribution Systems: Loss Reduction Formula, Problem Formulation, Solution Methodology and Mathematics Justification; Numerical Studies [J]. IEEE Trans. on Power Delivery, 1997, 12(2): 953-964.
17. Hsu Y Y, Kuo H C. Dispatch of Capacitors on Distribution System Using Dynamic Programming[J]. IEE. Proceedings-C, 1993, 140(6): 433-438.
18. Santoso N I, Tan O T. Neural-Net Real Time Control of Capacitors Installed on Distribution Systems[J]. IEEE Trans. on Power Delivery, 1990,5(1): 266-272.
19. Das B, Verma P K. Artificial Neural Network-based Optimal Capacitor Switching in a Distribution System[J]. Electric Power Systems Research, 2001, 60(1): 55-62.
20. Chiang H D, Wang J C, Orville Cockings, et al. Optimal Capacitor Placement in Distribution System Part I: A New Formulation and the Overall Problem; PartⅡ: Solution Algorithms and Numerical Results [J]. IEEE Trans on Power Delivery, 1990, 5(2): 634-649.
21. Chiang H D, Wang J C, Gary Darling. Optimal Capacitor Placement, Replacement and Control in Large-Scale Unbalanced Distribution Systems: System Modeling and A New Formulation; System Solution Algorithms and Numerical Studies [J]. IEEE Trans. on Power Systems, 1995,10(1): 356-369.
22. 王守相,王成山,王劍. 配電電容器三相分相優化投切[J]. 電網技術, 2002,26(8):16-20.WANG Shou-xiang, WANG Cheng-shan, WANG Jian. Optimal capacitor switching phase by phase in distribution systems[J]. Power System Technology, 2002,26(8):16-20.
23. Kuo C C, Chang H C. Solving the Bi-objective Scheduling of Switched Capacitors Using an Interactive Best-compromise Approach[J]. Electric Power Systems Research, 1998,46(3):133-140.
24. 劉莉,陳學允,孫小平.基于遺傳算法的配電網電容器優化投切[J].東北電力學院學報, 1999,19(4):33-36.LIU Li, CHEN Xue-yun, SUN Xiao-ping. Optimal capacitor switching in distribution networks with genetic method[J]. Journal Of Northeast China Institute OF Electric Power Engineering, 1999,19(4):33-36.
25. 張學松,柳焯,于爾鏗. 基于Tabu方法的配電電容器投切策略[J]. 電網技術, 1998,22(2):33~36.ZHANG Xue-song, LIU Zhuo, YU Er-keng. The strategy of distribution capacitor scheme based on tabu search[J]. Power System Technology, 1998,22(2):33~36.
26. 鄧集祥,張弘鵬. 用改進的Tabu搜索方法優化補償電容器分檔投切的研究[J]. 電網技術, 2000,24(2):46-49.DENG Ji-xiang, ZHANG Hong-peng. Optimization of on/off strategy of shunt capacitor based on modified tabu search method[J]. Power System Technology, 2000,24(2):46-49.
27. Hsu Y Y, Yang C C. A Hybrid Artificial Neural Network-Dynamic Programming Approach for Feeder Capacitor Scheduling [J]. IEEE Trans. on Power Systems, 1994,9(2): 1069-1075.
28. Miu K N, Chiang H D, Gary Darling. Capacitor Placement, Replacement and Control in Large Scale Distribution Systems by a GA-Based Two-Stage Algorithm[J]. IEEE Trans. on Power Systems, 1997,12(3): 1160-1166.
29. 盧鴻宇,胡林獻,劉莉等. 基于遺傳算法和TS算法的配電網電容器實時優化投切策略[J]. 電網技術, 2000,24(11):56-59.LU Hong-yu, HU Lin-xian, LIU Li et al. application of genetic algorithm/tabu search combination algorithm in distribution network real-time planning[J]. Power System Technology, 2000,24(11):56-59.
30. 陳星鶯,錢鋒,楊素琴. 模糊動態規劃法在配電網無功優化控制中的應用[J]. 電網技術, 2003,27(2):68-71.CHEN Xing-ying, QIAN Feng, YANG Su-qing. Application of fuzzy dynamic programming approach to optimal reactive power control in distribution system[J]. Power System Technology, 2003,27(2):68-71.