一開始沒看懂stddev是什么參數,找了一下,在tensorflow/python/ops里有random_ops,其中是這么寫的:
def random_normal(shape, mean=0.0, stddev=1.0, dtype=types.float32, seed=None, name=None): """Outputs random values from a normal distribution. Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. mean: A 0-D Tensor or Python value of type `dtype`. The mean of the normal distribution. stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation of the normal distribution. dtype: The type of the output. seed: A Python integer. Used to create a random seed for the distribution. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random normal values. """
也就是按照正態分布初始化權重,mean是正態分布的平均值,stddev是正態分布的標準差(standard deviation),seed是作為分布的random seed(隨機種子,我百度了一下,跟什么偽隨機數發生器還有關,就是產生隨機數的),在mnist/concolutional中seed賦值為66478,挺有意思,不知道是什么原理。
后面還有truncated_normal的定義:
def truncated_normal(shape, mean=0.0, stddev=1.0, dtype=types.float32, seed=None, name=None): """Outputs random values from a truncated normal distribution. The generated values follow a normal distribution with specified mean and standard deviation, except that values whose magnitude is more than 2 standard deviations from the mean are dropped and re-picked. Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. mean: A 0-D Tensor or Python value of type `dtype`. The mean of the truncated normal distribution. stddev: A 0-D Tensor or Python value of type `dtype`. The standard deviation of the truncated normal distribution. dtype: The type of the output. seed: A Python integer. Used to create a random seed for the distribution. See [`set_random_seed`](../../api_docs/python/constant_op.md#set_random_seed) for behavior. name: A name for the operation (optional). Returns: A tensor of the specified shape filled with random truncated normal values. """
截斷正態分布,以前都沒聽說過。
TensorFlow還提供了平均分布等。
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持VEVB武林網。
新聞熱點
疑難解答