国产探花免费观看_亚洲丰满少妇自慰呻吟_97日韩有码在线_资源在线日韩欧美_一区二区精品毛片,辰东完美世界有声小说,欢乐颂第一季,yy玄幻小说排行榜完本

首頁 > 編程 > Python > 正文

python時間日期函數與利用pandas進行時間序列處理詳解

2020-01-04 15:39:59
字體:
來源:轉載
供稿:網友

python標準庫包含于日期(date)和時間(time)數據的數據類型,datetime、time以及calendar模塊會被經常用到。

datetime以毫秒形式存儲日期和時間,datetime.timedelta表示兩個datetime對象之間的時間差。

下面我們先簡單的了解下python日期和時間數據類型及工具

給datetime對象加上或減去一個或多個timedelta,會產生一個新的對象

from datetime import datetimefrom datetime import timedeltanow = datetime.now()nowdatetime.datetime(2017, 6, 27, 15, 56, 56, 167000)datetime參數:datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])delta = now - datetime(2017,6,27,10,10,10,10)deltadatetime.timedelta(0, 20806, 166990)delta.days 0delta.seconds 20806delta.microseconds 166990

datetime模塊中的數據類型

 

類型 說明
date 以公歷形式存儲日歷日期(年、月、日)
time 將時間存儲為時、分、秒、毫秒
datetime 存儲日期和時間
timedelta 表示兩個datetime值之間的差(日、秒、毫秒)

 

字符串和datetime的相互轉換

1)python標準庫函數

日期轉換成字符串:利用str 或strftime

字符串轉換成日期:datetime.strptime

stamp = datetime(2017,6,27)str(stamp) '2017-06-27 00:00:00'stamp.strftime('%y-%m-%d')#%Y是4位年,%y是2位年 '17-06-27'#對多個時間進行解析成字符串date = ['2017-6-26','2017-6-27']datetime2 = [datetime.strptime(x,'%Y-%m-%d') for x in date]datetime2 [datetime.datetime(2017, 6, 26, 0, 0), datetime.datetime(2017, 6, 27, 0, 0)]

2)第三方庫dateutil.parser的時間解析函數

from dateutil.parser import parseparse('2017-6-27') datetime.datetime(2017, 6, 27, 0, 0)parse('27/6/2017',dayfirst =True) datetime.datetime(2017, 6, 27, 0, 0)

3)pandas處理成組日期

pandas通常用于處理成組日期,不管這些日期是DataFrame的軸索引還是列,to_datetime方法可以解析多種不同的日期表示形式。

date ['2017-6-26', '2017-6-27']import pandas as pdpd.to_datetime(date) DatetimeIndex(['2017-06-26', '2017-06-27'], dtype='datetime64[ns]', freq=None)

datetime 格式定義

代碼 說明
%Y 4位數的年
%y 2位數的年
%m 2位數的月[01,12]
%d 2位數的日[01,31]
%H 時(24小時制)[00,23]
%l 時(12小時制)[01,12]
%M 2位數的分[00,59]
%S 秒[00,61]有閏秒的存在
%w 用整數表示的星期幾[0(星期天),6]
%F %Y-%m-%d簡寫形式例如,2017-06-27
%D %m/%d/%y簡寫形式

pandas時間序列基礎以及時間、日期處理

pandas最基本的時間序列類型就是以時間戳(時間點)(通常以python字符串或datetime對象表示)為索引的Series:

dates = ['2017-06-20','2017-06-21',/   '2017-06-22','2017-06-23','2017-06-24','2017-06-25','2017-06-26','2017-06-27']import numpy as npts = pd.Series(np.random.randn(8),index = pd.to_datetime(dates))ts 2017-06-20 0.788811 2017-06-21 0.372555 2017-06-22 0.009967 2017-06-23 -1.024626 2017-06-24 0.981214 2017-06-25 0.314127 2017-06-26 -0.127258 2017-06-27 1.919773 dtype: float64ts.index DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',     '2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],     dtype='datetime64[ns]', freq=None)

pandas不同索引的時間序列之間的算術運算會自動按日期對齊

ts[::2]#從前往后每隔兩個取數據 2017-06-20 0.788811 2017-06-22 0.009967 2017-06-24 0.981214 2017-06-26 -0.127258 dtype: float64ts[::-2]#從后往前逆序每隔兩個取數據 2017-06-27 1.919773 2017-06-25 0.314127 2017-06-23 -1.024626 2017-06-21 0.372555 dtype: float64ts + ts[::2]#自動數據對齊 2017-06-20 1.577621 2017-06-21   NaN 2017-06-22 0.019935 2017-06-23   NaN 2017-06-24 1.962429 2017-06-25   NaN 2017-06-26 -0.254516 2017-06-27   NaN dtype: float64

索引為日期的Series和DataFrame數據的索引、選取以及子集構造

方法:
1).index[number_int]

2)[一個可以被解析為日期的字符串]

3)對于,較長的時間序列,只需傳入‘年'或‘年月'可返回對應的數據切片

4)通過時間范圍進行切片索引

ts 2017-06-20 0.788811 2017-06-21 0.372555 2017-06-22 0.009967 2017-06-23 -1.024626 2017-06-24 0.981214 2017-06-25 0.314127 2017-06-26 -0.127258 2017-06-27 1.919773 dtype: float64ts[ts.index[2]] 0.0099673896063391908ts['2017-06-21']#傳入可以被解析成日期的字符串 0.37255538918121028ts['21/06/2017'] 0.37255538918121028ts['20170621'] 0.37255538918121028ts['2017-06']#傳入年或年月 2017-06-20 0.788811 2017-06-21 0.372555 2017-06-22 0.009967 2017-06-23 -1.024626 2017-06-24 0.981214 2017-06-25 0.314127 2017-06-26 -0.127258 2017-06-27 1.919773 dtype: float64ts['2017-06-20':'2017-06-23']#時間范圍進行切片 2017-06-20 0.788811 2017-06-21 0.372555 2017-06-22 0.009967 2017-06-23 -1.024626 dtype: float64

帶有重復索引的時間序列

1).index.is_unique檢查索引日期是否是唯一的

2)對非唯一時間戳的數據進行聚合,通過groupby,并傳入level = 0(索引的唯一一層)

dates = pd.DatetimeIndex(['2017/06/01','2017/06/02','2017/06/02','2017/06/02','2017/06/03'])dates DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-02', '2017-06-02',     '2017-06-03'],     dtype='datetime64[ns]', freq=None)dup_ts = pd.Series(np.arange(5),index = dates)dup_ts 2017-06-01 0 2017-06-02 1 2017-06-02 2 2017-06-02 3 2017-06-03 4 dtype: int32dup_ts.index.is_unique Falsedup_ts['2017-06-02'] 2017-06-02 1 2017-06-02 2 2017-06-02 3 dtype: int32grouped = dup_ts.groupby(level=0).mean()grouped 2017-06-01 0 2017-06-02 2 2017-06-03 4 dtype: int32dup_df = pd.DataFrame(np.arange(10).reshape((5,2)),index = dates )dup_df

 

  0 1
2017-06-01 0 1
2017-06-02 2 3
2017-06-02 4 5
2017-06-02 6 7
2017-06-03 8 9

 

grouped_df = dup_df.groupby(level=0).mean()##針對DataFramegrouped_df

 

  0 1
2017-06-01 0 1
2017-06-02 4 5
2017-06-03 8 9

 

本文總結了以下4個知識點

1)字符串、日期的轉換方法

2)日期和時間的主要python,datetime、timedelta、pandas.to_datetime等

3)以時間為索引的Series和DataFrame的索引、切片

4)帶有重復時間索引時的索引,.groupby(level=0)應用


注:相關教程知識閱讀請移步到python教程頻道。
發表評論 共有條評論
用戶名: 密碼:
驗證碼: 匿名發表
主站蜘蛛池模板: 上林县| 定陶县| 霸州市| 濉溪县| 谢通门县| 扶余县| 大姚县| 金沙县| 兴山县| 湖州市| 湖南省| 惠安县| 龙井市| 米林县| 施甸县| 东丰县| 霍山县| 玛多县| 宜章县| 自贡市| 牡丹江市| 荔波县| 昭平县| 那坡县| 灵川县| 永安市| 司法| 行唐县| 贺兰县| 中山市| 汝州市| 安图县| 博白县| 克什克腾旗| 璧山县| 五原县| 金堂县| 潍坊市| 清流县| 金平| 称多县|